

Saverio D'Auria

School of Physics and Astronomy, University of Glasgow, U.K. on behalf of the ATLAS collaboration

July 8, 2017

European Physics Society HEP meeting - Venezia

- Introduction
- $t\bar{t}$ Resonance searches
 - Vector and scalar cases
 - Analysis method
 - Results on the search for a vector boson resonance at $\sqrt{s}=13~{\rm TeV}$ data, 3.2 fb $^{-}1$ $_{\rm [ATLAS-CONF-2016-014]}$
 - Results on the searches in the scalar resonance sector (from $\sqrt{s}=8~{\rm TeV}~{\rm data})$ [CERN-EP-2017-134, to be submitted to PRL] New
- $t\bar{b}$ resonance searches (review 8 TeV ATLAS results)
- Conclusions

Top is the heaviest quark, Yukawa coupling with Higgs ≈ 1 , special role in many BSM theories: topcolour-assisted technicolour, composite Higgs models, extra dimensions, Higgs doublet models all have large coupling to $t\bar{t}$.

Search for resonances decaying into $t\bar{t}$ as generic as possible:

- Vector case: search for a bump in $t\bar{t}$ invariant mass
- Scalar case: search for a bump and/or a dip in mass spectrum

Model independent method, exclusion limits in specific models Main background processes:

- W+jets,
- Z+jets,
- single top,
- non resonant $t\bar{t}$ production, well defined mass spectrum shape

- ⁽¹⁾ Single electron or single muon trigger, L = 3.2 fb⁻¹ (2015 data)
- Off-line ℓ cuts: $p_T > 25$ GeV, $|\eta_e| < 2.47$; $|\eta_\mu| < 2.5$; p_T -dependant cone isolation (max $\Delta R < 0.2$); $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- no additional lepton in the event
- Track-jets anti- κ_t with R = 0.2, $\geq 1b$ -tagged track jet at 70% efficiency
- ≥ 1 "standard" jet (anti- $\kappa_t R = 0.4$) $p_T > 25$ GeV, $|\eta| < 2.5$ at ΔR (jet-lepton)< 1.5 "b-jet of leptonic top" $\equiv J_{sel}$, no b-tag requirement
- Large R jet $R = 1, p_T > 300$ GeV at large angle from both the lepton $(\Delta \phi_1 > 2.3 \text{ rad})$ and from J_{sel} $(\Delta \phi_2 > 1.5 \text{ rad})$
- $E_T^{\text{miss}} > 20 \text{ GeV}$,
- $E_T^{\text{miss}} + m_T^W > 60 \text{ GeV}$

¹ATLAS-CONF-2016-014

Invariant mac				
000	000	00	00	
Outline and Introduction	tt Vector Resonances	tī Scalar Resonances	tb̄ Resonances	Conclusions

Good Data-Simulation agreement, within systematic uncertainties. High purity $t\bar{t}$ selected (85%)

No evidence for a deviation from non-resonant m_{tt} distribution.

Statistical fit using BUMPHUNTER, with nuisance parameter profile fit.

²ATLAS collab. JHEP 08 (2015) 148

(日) (四) (日) (日) (日) (日)

Outline and Introduction
ooo $t\bar{t}$ Vector Resonances
ooo $t\bar{t}$ Scalar Resonances
oo $t\bar{b}$ Resonances
ooConclusions
ooConclusions
oooooooooo

Scalar resonances: interference effects

Gluon initiated processes interfere with non-resonant $t\bar{t}$ production³. Scalars decaying to $t\bar{t}$ detected as dip+bump over continuum. MC simulation approaches:

- A) many large $t\bar{t}$ (S+I+B) samples scaning $m_{A/H}$ and width $(tan \beta)$
- B) single non resonant sample (B) POWHEG+PYTHIA6, many S+I term samples with negative weights MADGRAPH5_AMC@NLO SCANING $m_{A/H}$ and width. Use reweight to increase density

This analysis used (B).

³e.g. Djouadi, Ellis, Quevillon CERN-TH/2016-095, or Hespel, Maltoni et al. J. High Energ. Phys. (2016) 2016: 16

 $decay\,$ See also the talk by G. Barone (link) this conf.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Outline and Introduction $t\bar{t}$ Vector Resonances $t\bar{t}$ Scalar Resonances $t\bar{t}$ Besonances of $t\bar{t}$ Conclusions of $t\bar{t}$ Limits to scalar resonances decaying to $t\bar{t}$

Limits to scalar resonances decaying to $t\bar{t}$

- Same requirement as before but
- \geq 4 jets with R=0.4 and p_T > 25 GeV,

 $\sqrt{s} = 8$ TeV. 20.3fb⁻¹, all limits at 95% CL

650

m_A [GeV]

600

2.0

1.5 ⊌ ug 1.0

0.5

500

550

• ≥ 1 b-tagged jet 70% eff. Interpretation with 2-Higgs Doublet Model. Parameter tan $\beta = \frac{\text{vev}_1}{\text{vev}_2}$ Exclusion in $m_H - \tan \beta$ plane. No sign of a scalar resonance in data

ATLAS Preliminary

700

750 500

tb resonance searches at $\sqrt{s} = 8$ TeV

Search for leptophobic W' decaying to tb. s-channel single top production. Searched for in decay modes

- $\ell{+}jets$ with 20.3 fb^{-1} $_{\rm [Phys.\ Lett.\ B743\ (2015)\ 235]}$
- 4 jets, of which 2 b-jets with 20.3 $\rm fb^{-1}$

Right and Left-handed W' coupling hypotheses. Minimaly different results Excluded $m_{W'_L} < 1.68$ TeV and $m_{W'_R} < 1.76$ TeV with coupling $g' = g_{\rm SM} qqbb$ Excluded $m_{W'_L} < 1.70$ TeV and $m_{W'_R} < 1.92$ TeV with coupling $g' = g_{\rm SM} \ell \nu bb$ Exclusion curves in $g'/g_{\rm SM}$ vs mass plane.

- No sign of new resonances found so far
- 13 TeV data exclude leptophobic Z' with $m_{Z'} < 2.0$ TeV
- 8 TeV ATLAS analysis excludes scalar resonances so far. The 2HDM-II parameter space has exclusion for $M_{A/H} < 600$ GeV
- 8 TeV data exlude leptophobic W' with $m_{W'} < 1.92$ TeV
- New analyses on these channels are being finalised using the whole data set at 13 TeV (2015+2016)

Time for questions

Backup

Invariant mass electron channel

tb exclusion plots: coupling vs. mass

▶ 4 @ ▶ 4 분 ▶ 4 분 ▶ 로 ● 9 0 0 4/4