Searches for new phenomena in leptonic final states using the ATLAS detector

Giacomo Artoni on behalf of the ATLAS Collaboration

Introduction and Motivation

- Isolated, high-p_T leptons: a powerful probe for new physics!
 - Electrons: exploit best resolution at high energies
 - Muons: ensure reliable sagitta measurement using three-station tracks in the muon spectrometer
- Many BSM models predicting <u>heavy states</u>, detectable at the LHC via their decays to electrons/muons/taus

E₆-motivated theories, Sequential Standard Model, Randall-Sundrum model, quantum black hole model, minimal walking technicolour, *R*-parity-violating supersymmetry, left-right symmetric models, Higgs triplet models, only to name a few!

Introduction and Motivation

Looking for a W': e/μ + ME_T search

- Select exactly one isolated electron (muon) with $p_T>65$ (55) GeV and large
 - missing transverse momentum
 - Transverse mass of the system (m_T) used as discriminant
 - Acceptance at 4 TeV: 47% for muons, 77% for electrons
- Minor backgrounds:
 - ttbar: POWHEG+PYTHIA, cross-section normalised to NNLO in pQCD
 - Multi-jet background: data-driven estimate with "matrix method"

using loose→tight ID probability

Looking for a W': e/μ + ME_T search

arXiv:1706.04786 2015+2016 data 36.1 fb⁻¹ at 13 TeV

- Irreducible background: $W \rightarrow lv$
 - Generated using POWHEG (NLO in pQCD) with the CT10 PDF set (+Pythia8+Photos)
 - Normalised to NNLO in pQCD (+CT14NNLO PDF) with massdependent k-factor

increasing cross-section by 5% (10%) for a 1 (5) TeV mass

 Also applying NLO EW massdependent k-factor

lowering predicted cross-section by 10% (20%) at 1 (5) TeV

- No significant excesses, excluding masses below 5.1 TeV (SSM W')
- Main systematics (background):
 - PDF variation/choice: 90% CL CT14NNLO uncertainty set/difference with NNPDF3.0
 - EW corrections
- Main systematics (signal):
 - Electron energy scale and resolution
 - Muon identification and isolation efficiencies

Looking for a Z': $ee/\mu\mu$ search

- Select one pair of isolated electrons (muons) with $p_T>30$ GeV
 - Acceptance at 3 TeV: 40% for muons, 71% for electrons
- Irreducible DY from simulation:
 - POWHEG at NLO in pQCD, with NNLO (QCD) and NLO (EW) corrections
- Other backgrounds with real leptons from simulation (diboson/ttbar)
- Background from fakes (ee only):
 - using again "matrix method" (extension to dilepton case)

Looking for a Z': $ee/\mu\mu$ search

- No significant excesses, excluding masses below 4.5 TeV (SSM Z')
 - Comparable limits on E₆-motivated models!
- Also setting:
 - Imits on the ratio of coupling strengths between the Z' boson and the Z boson, as a function of the Z' mass in the context of minimal Z' models
 - model-independent limits
 - fiducial cuts p_T >30 GeV, $|\eta|$ <2.5, mass window 2x true signal width

anybody with a Z' model outside ATLAS can reinterpret our results!

Looking for a Z': $\tau\tau$ search

- Re-interpretation of the MSSM Higgs search (see talk by <u>G. Barone</u>)
- Analysis split into Thad Thad and TlepThad final states (but no b-jets splitting), using total transverse mass as final discriminant
- Thad Thad selection: use single-T triggers, require opposite-charge, back-to-back Thad pairs
- multijet background: use dijet control region by inverting identification on the τ_{had} s and apply "fake-factor" parametrised as a function of p_T and track multiplicity of the τ
- non-multijet backgrounds: using simulation corrected with fake-rates extracted from W+jets and ttbar control regions

ATLAS-CONF-2017-050

2015+2016 data

NEW! ATLAS-CONF-2017-050 2015+2016 data 36.1 fb⁻¹ at 13 TeV

- $T_{\text{lep}T_{\text{had}}}$ selection: use single-lepton triggers, require lepton (ℓ) and T_{had} to be back-to-back, veto W+jets events with $m_{\text{T}}(\ell, \text{ME}_{\text{T}})$ cut and Z+jets events with $m(\ell, T_{\text{had-vis}})$ cut
- TlepThad backgrounds: jets mis-identified as Thads using data-driven fake-factor technique, other contributions (real leptons) from simulation
- No excess found, limits set on a SSM Z' and SFM Z'
 - $\tau_{had}\tau_{had}$ dominating channel

Searches for new phenomena in leptonic final states using the ATLAS detector - G. Artoni (Oxford)

Looking for LFV: $e\mu$, $e\tau$, $\mu\tau$ search

- Requiring a pair of different-flavour leptons with p_T >65 GeV (40 GeV for τ), back-to-back in ϕ and no charge requirement
 - Acc. x eff.: 50%, 25% and 20% (eµ, eτ, μτ)
- Irreducible backgrounds: DY $\rightarrow \tau \tau$, ttbar, diboson
 - contribution estimated from simulation
- Reducible backgrounds: W+jets and multi-jet
 - matrix method for $e\mu$, MC corrected with measured τ fakerate on data for $e\tau/\mu\tau$
- No significant excesses observed, limits extracted on the mass of a Z' boson (with lepton-flavour-violating couplings) or a supersymmetric τ sneutrino (with R-parity violating couplings)
 - results also interpreted as limits on the threshold mass for quantum black hole production

05

4.5

M_{z'} [TeV]

Eur. Phys. J. C76 (2016) 541 2015 data 3.2 fb⁻¹ at 13 TeV

Conclusions

- Presented searches for new physics with leptonic final states
 - Small backgrounds/good resolution, ideal to look for new physics at the LHC!
- Most searches available with full 2015+2016 statistics

No significant excess found...

...setting more and more stringent limits

Let's stay positive!

A lot more data coming...

Conclusions

W': limits split per channel

Electron channel									
$m_{\rm T} [{\rm GeV}]$	130 - 200	200-400	400-600	600-1000	1000 - 2000	2000 - 3000	3000-7000		
Total SM	620000 ± 70000	168000 ± 10000	9700 ± 500	2010 ± 140	232 ± 24	5.9 ± 1.4	0.4 ± 0.4		
W' (2 TeV)	24.3 ± 0.9	126 ± 3	199 ± 5	614 ± 14	3280 ± 50	330 ± 70	0.85 ± 0.04		
W' (3 TeV)	3.83 ± 0.08	14.2 ± 0.2	16.1 ± 0.4	35.7 ± 0.4	122 ± 2	229 ± 4	24 ± 5		
W' (4 TeV)	1.18 ± 0.02	4.06 ± 0.03	3.58 ± 0.03	5.92 ± 0.03	12.1 ± 0.1	13.5 ± 0.2	23.3 ± 0.2		
W' (5 TeV)	0.476 ± 0.008	1.62 ± 0.01	1.35 ± 0.01	1.95 ± 0.01	2.64 ± 0.01	1.56 ± 0.01	3.72 ± 0.02		
Data	671 128	169 338	9551	1931	246	4	0		
Muon channel									
$m_{\rm T} [{\rm GeV}]$	110-200	200 - 400	400-600	600-1000	1000 - 2000	2000 - 3000	3000-7000		
Total SM	1640000 ± 200000	122000 ± 8000	6460 ± 330	1320 ± 90	150 ± 13	4.7 ± 0.6	0.63 ± 0.13		
W' (2 TeV)	25.0 ± 1.5	102 ± 6	143 ± 9	420 ± 22	1720 ± 90	369 ± 28	17 ± 4		
W' (3 TeV)	3.98 ± 0.12	10.3 ± 0.3	10.7 ± 0.5	26.3 ± 1.5	84 ± 5	98 ± 6	39.3 ± 3.4		
W' (4 TeV)	1.20 ± 0.03	2.80 ± 0.07	2.36 ± 0.09	4.07 ± 0.19	8.1 ± 0.5	8.8 ± 0.6	11.1 ± 0.9		
W' (5 TeV)	0.485 ± 0.012	1.12 ± 0.03	0.88 ± 0.03	1.27 ± 0.05	1.7 ± 0.1	0.99 ± 0.07	1.7 ± 0.1		
Data	1862326	128155	6772	1392	177	3	3		

W': main systematic uncertainties

Source	Electron	channel	Muon channel		
	Background	Signal	Background	Signal	
Trigger	negl. (negl.)	negl. (negl.)	2% (2%)	2%~(2%)	
Lepton reconstruction and identification	negl. (negl.)	negl. (negl.)	5%~(6%)	5%~(7%)	
Lepton momentum scale and resolution	3%~(3%)	4%~(3%)	3%~(9%)	1%~(1%)	
$E_{\rm T}^{\rm miss}$ resolution and scale	$< 0.5\% \ (< 0.5\%)$	< 0.5%~(< 0.5%)	< 0.5% (1%)	1%~(1%)	
Jet energy resolution	$< 0.5\% \ (< 0.5\%)$	< 0.5%~(< 0.5%)	< 0.5% (< 0.5%)	< 0.5%~(< 0.5%)	
Pile-up	1% (< 0.5%)	$1\% \ (< 0.5\%)$	< 0.5% (1%)	1%~(< 0.5%)	
Multijet background	7% (70%)	N/A (N/A)	1% (1%)	N/A (N/A)	
Top extrapolation	1% (1%)	N/A (N/A)	4% (8%)	N/A (N/A)	
Diboson extrapolation	4%~(20%)	N/A (N/A)	4%~(10%)	N/A (N/A)	
PDF choice for DY	1%~(13%)	N/A (N/A)	< 0.5% (1%)	N/A (N/A)	
PDF variation for DY	8%~(15%)	N/A (N/A)	7% (11%)	N/A (N/A)	
EW corrections for DY	4%~(7%)	N/A (N/A)	4%~(5%)	N/A (N/A)	
Luminosity	3% (3%)	3%~(3%)	3% (3%)	3%~(3%)	
Total	13% (76%)	5% (5%)	12% (21%)	6%~(8%)	

Z': more limits

Z': model independent limits

Z': CI limits

