Inclusive searches for squarks and gluinos in final states with jets and E_T^{miss} with the ATLAS detector

Otilia Ducu, on behalf of the ATLAS collaboration

Université de Montréal (Canada), IFIN-HH (Romania)

July 6, 2017

EPS Conference on High Energy Physics, Venice, Italy

SUSY STRONG PRODUCTION

Gluinos (\tilde{g}) and squarks (\tilde{q}) decay either directly or via a cascade into:

- Several jets \rightarrow *b*-tagged or not
- Leptons \rightarrow from slepton or chargino decays
- Lightest Supersymmetric Particle (LSP, a viable Dark Matter candidate) \rightarrow escaping the detector, leading to high missing transverse energy (E_T^{miss})

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017						$\sqrt{s} = 7, 8, 13 \text{ TeV}$				
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-1]	Mass limit	$\sqrt{s} = 7, 4$	B TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA_CMSSM} \\ & \tilde{q}_{1}, \tilde{q}_{-q} \tilde{q}_{1}^{2} \\ & \tilde{q}_{1}, \tilde{q}_{-q} \tilde{q}_{1}^{2} \\ & \tilde{q}_{2}, \tilde{q}_{-q} \tilde{q}_{1}^{2} \\ & \tilde{g}_{2}, \tilde{g}_{-q} \tilde{g}_{1}^{2} \\ & \tilde{g}_{2}, \tilde{g}_{1} \\ & \tilde{g}_{2}, \tilde{g}_{1} \\ & \tilde{g}_{2}, \tilde{g}_{1} \\ & \tilde{g}_{2}, \tilde{g}_{2} \\ & \tilde{g}_{2}, \tilde{g}_{1} \\ & \tilde{g}_{2}, \tilde{g}_{1} \\ & \tilde{g}_{1}, \tilde{g}_{2} \\ & g$	$\begin{array}{c} 0.3 \ e, \mu/1.2 \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1.2 \tau + 0.1 \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \\ \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets f 0-2 jets 2 jets mono-jet	 Yes 	20.3 36.1 36.1 36.1 36.1 36.1 36.1 36.1 32 3.2 20.3 13.3 20.3 20.3	4.8 4 4 5 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	608 GeV 900 GeV 865 GeV	1.85 TeV 1.57 TeV 2.01 TeV 1.825 TeV 1.825 TeV 2.0 TeV 1.85 TeV 1.37 TeV 1.8 TeV	mkj)-mkg) mkj)-clogOGeV, m(1* gea, 4)-mkj*re(3)- mkj)-clogOGeV, m(1* gea, 4)- mkj)-clogOGeV, m(2*)-oS(mkj*)+re(3)- mkj)-clogOGeV, mkj>-clogOGeV, mkj>-re(3)- mkj)-clogOGeV, mkj>-re(3)-s(3)-s(3)- mkj>-s(3)-s(3)-s(3)-s(3)-s(3)-s(3)-s(3)-s(3)	1507 0505 ATLAS-CONF-037 - 022 1604 0773 ATLAS-CONF-037 - 022 ATLAS-CONF-037 - 033 1007 0504 - 037 - 033 1007 0540 - 055 1007 055

• Today: searches for \tilde{g} and \tilde{q} in final states with jets and \mathcal{E}_T^{miss} using 13 TeV ATLAS data

- Corresponding to an integrated luminosity of ${\sim}36~{\rm fb}^{-1}$
 - Results are interpreted using SUSY simplified models, where particles not involved in production or decays are decoupled

0 Lepton searches, <u>CONF-2017-022</u>

- $2 \rightarrow 6$ jets and no leptons final states, where the signal regions (SR) are defined with:
 - 1) Simple cuts on effective mass variable, m_{eff} (jets transverse momentum (p_T) plus E_T^{miss})
 - 2) Recursive Jigsaw Reconstruction (RJR) techniques
 - RJR impose specific decay hypothesis on event and assign 4-momenta to invisible states
 - Improves the sensitivity to models with small mass splittings between the sparticles
 - See <u>Paul Jackson</u> and <u>Julien Maurer</u> presentations later in the day

• Typical m_{eff}-based signal regions:

Targeted signal	$\tilde{g}\tilde{g}, \tilde{g} \to q\bar{q}W\tilde{\chi}_1^0 \text{ and } \tilde{q}\tilde{q}, \tilde{q} \to qW\tilde{\chi}_1^0$			
Bequirement	Signal Region			
rtequirement	Meff-2jB-1600	Meff-2jB-2400		
$E_{\rm T}^{\rm miss}$ [GeV] >	25	50		
$p_{\rm T}(\text{Large-R } j_1) [\text{GeV}] >$	200			
$p_{\rm T}(\text{Large-R } j_2) [\text{GeV}] >$	200			
$m(\text{Large-R } j_1) [\text{GeV}]$	[60,110]			
$m(\text{Large-R } j_2) [\text{GeV}]$	[60, 110]			
$\Delta \phi(\operatorname{jet}_{1,2,(3)}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.6			
$\Delta \phi(\text{jet}_{i>3}, \boldsymbol{E}_{T}^{\text{miss}})_{\text{min}} >$	0.4			
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	20			
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1600	2400		

- Depending on the SR, $m_{
 m eff} > 1$ 2.8 TeV
- $E_T^{miss} > 200 250 \text{ GeV}$
- Leading jet > 200 700 GeV
- Additional cuts on No. jets, $\Delta \Phi(\text{jet}_i, E_T^{miss})_{\min}, E_T^{miss}/H_T$ (where H_T is \sum of jets p_T)

BACKGROUNDS, CONF-2017-022

Main backgrounds: W/Z +jets, $t\bar{t}$, single top, di-boson and multi-jets processes:

- 1) $Z \rightarrow \nu \nu$ +jets: estimated with a γ +jets control region (CR), with γ ($p_T > 150 \text{ GeV}$) treated as invisible in the E_T^{miss} computation
- 2) $W \to \tau \nu$ (e, μ) +jets and semi-leptonic $t\bar{t}$: 1-lepton CRs, with ℓ ($p_T > 27 \text{ GeV}$) treated as a jet, to model bkg events with hadronically decaying τ
- Multi-jets: using a data-driven technique which applies a resolution function to well measured multi-jets events

*Observed $m_{\rm eff}$ distributions in three control regions, after applying all selection requirements except those on the plotted variable

RESULTS IN THE SRS, CONF-2017-022

Results in the SRs: look for significant difference between observed data and bkg estimation

• When considering the $m_{\rm eff}$ -based signal regions:

• Most significant excesses: Meff-2j-2100 (a local significance of 2.14 standard deviations)

EXCLUSION LIMITS, CONF-2017-022

No significant excess \rightarrow place limits on sparticles masses using simplified SUSY models

 $\bullet\,$ Limits also with other final states (RHS, blue) \rightarrow complementary of the ATLAS searches

Multi-jets searches, <u>ATLAS-CONF-2017-033</u>

$7{\rightarrow}11$ jets and no leptons final states: analysis targeting long decay chains of gluinos

- 1) Heavy flavor channel: $1 \rightarrow 3$ b-jets ($p_T > 50$ GeV)
- 2.A) Large-R jet mass channel: target final states with boosted heavy particles such as top quarks or bosons forming heavy large-R jets
 - Large-R jets: composite jets with $p_T^{R=1.0} > 100 \text{ GeV}$ and $\eta^{R=1.0} < 1.5$
 - $\bullet~$ SRs with large-R jets mass $>340~{\rm GeV}$ or 500 GeV
- 2.B) Rare Standard Model bkg: not many events with large-R jets heavier than the top mass

Summary of the selection criteria used to define the signal regions:

Criterion	Heavy flavour channel Jet mass channel				
Jet $ \eta $		< 2.0			
Jet p _T	> 50 GeV	$> 80 \mathrm{GeV}$	> 50 GeV		
$N_{\rm jet}$	$\geq 8, 9, 10, 11$	$\geq 7,8,9$	$\geq 8, 9, 10$		
Lepton veto	No preselecte	ed e or μ after	er overlap removal		

Criterion	Heavy flavour channel	Jet mass channel		
<i>b</i> -jet selection Large-R-jet selection	$\begin{array}{l} p_{\rm T} > 50 {\rm GeV}, \eta < 2.0 \\ p_{\rm T} > 100 {\rm GeV}, \eta < 1.0 \end{array}$			
$N_{b-\text{tag}}$ M_{J}^{Σ}	$\geq 0, 1, 2$ ≥ 0	$ \begin{vmatrix} \geq 0 \\ \geq 340,500 \mathrm{GeV} \end{vmatrix} $		
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$	$> 5 \mathrm{GeV}^{1/2}$			

Uses multi-jets triggers: lower (implicit) requirement on E_T^{miss} than in the previous analysis

• QCD a relevant background \rightarrow estimated using a data-driven method

RESULTS, ATLAS-CONF-2017-033

No excess in the SRs \rightarrow place limits on sparticles masses using simplified SUSY models

• Limits with other final states (RHS, blue) \rightarrow complementary of the ATLAS searches

8/12

FINAL STATES WITH MULTI-b JETS

Search for SUSY with 0 or 1 lepton and \geq 3 *b*-jets, <u>ATLAS-CONF-2017-021</u>

- Discovery strategy: several cut-and-count SRs
- Exclusion strategy: multi-bin fit across binned orthogonal SRs in N_j and $m_{\rm eff}$
- Key variables: nr. of leptons and (b-)jets, E_T^{miss} , m_{eff} , m_T , M_I^{Σ} , $\Delta \Phi$ (jet_{1 $\rightarrow 4$}, E_T^{miss})_{min}
- Dominant background: $t\bar{t}$ pairs with additional high p_T jets

* pre-fit distributions!

• tt MC simulations normalized in an 1-lepton CR and extrapolated to VRs and SRs

• Other backgrounds (W/Z+jets, di-boson, single top, etc) estimated from MC simulations

Results in the signal regions:

• No significant excess found above the predicted background in the SRs

< □ > < 部 > < 言 > < 言 > こ き の Q (や 10 / 12

EXCLUSION LIMITS, ATLAS-CONF-2017-021

Limits on sparticles masses using simplified SUSY models (dark magenta):

 $\bullet~$ Limits with other final states \rightarrow complementary of the ATLAS searches

• Gluino masses excluded up to $1.9 \text{ TeV} \rightarrow \text{strongest limits among all ATLAS searches}$

- Excellent LHC performance!
- As for today, (unfortunately) no evidence of SUSY
- New limits significantly extend the Run 1 results \rightarrow check out also the ATLAS public page
- $\bullet\,$ Exciting future in front of us: at the end of the LHC Run-2 expect 120-150 $\rm fb^{-1}$ and by 2035 \sim 3000 $\rm fb^{-1}$ of data!

BACKUP

$2 \rightarrow 6$ Jets and 0 leptons

- Most significant excess across m_{eff} -based SRs occurs in SR Meff-2j-2100 (LHS plot, a significance of 2.14 standard deviations)
- In RJR-based SRs, most significant excess RJR-S1a (RHS plot, 2.22σ)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

SEARCH FOR SUSY WITH MULTI-JETS FINAL STATES

Final states with 0-leptons and 7 \rightarrow 11 jets CONF note

- Discriminants: E_T^{miss} over sqrt of sum of jets $p_T(H_T)$, sum of the large-R Jets mass (M_L^{\sum})
- Main backgrounds: multi-jets, $t\bar{t}$ and W+jets processes
 - Multi-jets: using a data template fit method (LHS plot)
 - $t\bar{t}$ and W+jets: MC normalized in dedicated CRs (middle & RHS plots, after norm)

Very good data-bkg estimation agreement in all CRs/VRs

Results in the SRs: uncertainties

∃ つへへ 17/12

・ロン ・回 と ・ ヨ と ・ ヨ と

SUSY PARTICLE

Chiral supermultiplets

Gauge sm.

	Proper s	tates in	Sportners	Proper states in		
	interaction term	mass term	spartners	interaction term	mass term	
Leptons $S = 1/2$	$\begin{pmatrix} \nu_e \\ e_L \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu_L \end{pmatrix}$	$, e_R$ $, \mu_R$	Sleptons $S = 0$	$\begin{pmatrix} \widetilde{\nu}_e \\ \widetilde{e}_L \end{pmatrix}, \widetilde{e}_R \\ \begin{pmatrix} \widetilde{\nu}_\mu \\ \widetilde{\mu}_L \end{pmatrix}, \widetilde{\mu}_R \end{pmatrix}$		
	$\begin{pmatrix} \nu_{\tau} \\ \tau_L \end{pmatrix}$	$, au_R$		$\begin{pmatrix} \widetilde{ u}_{ au} \\ \widetilde{ au}_L \end{pmatrix}, \widetilde{ au}_R$	$\widetilde{\tau}_1,\widetilde{\tau}_2,\widetilde{\nu}_\tau$	
Quarks $S = 1/2$	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} c_L \\ s_L \end{pmatrix},$	u_R, d_R c_R, s_R	Squarks $S = 0$	$\begin{pmatrix} \widetilde{u}_L \\ \widetilde{d}_L \end{pmatrix}, \widetilde{u}_R, \widetilde{d}_R \\ \begin{pmatrix} \widetilde{c}_L \\ \widetilde{s}_L \end{pmatrix}, \widetilde{c}_R, \widetilde{s}_R \end{pmatrix}$		
	$\begin{pmatrix} t_L \\ b_L \end{pmatrix}$,	t_R, b_R		$\begin{pmatrix} \widetilde{t}_L \\ \widetilde{b}_L \end{pmatrix}, \widetilde{t}_R, \widetilde{b}_R$	$\widetilde{t}_1, \widetilde{t}_2, \widetilde{b}_1, \widetilde{b}_2$	
Gauge Bosons $S = 1$	W^{\pm}, W^0, B, g	W^{\pm}, Z^0, γ, g	$\begin{array}{l} \text{Gauginos} \\ S=1/2 \end{array}$	$\widetilde{W}^{\pm}, \widetilde{W}^0, \widetilde{B}, \widetilde{g}$	Gluino \tilde{g} Neutralinos	
$\begin{array}{l} \text{Higgs} \\ \text{Boson} \\ S = 0 \end{array}$	$\begin{pmatrix} H_u^+ \\ H_u^0 \\ H_u^0 \end{pmatrix}, \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	h^0, H^0, A^0, H^{\pm}	$\begin{array}{l} {\rm Higgsinos}\\ S=1/2 \end{array}$	$\begin{pmatrix} \widetilde{H}_u^+ \\ \widetilde{H}_u^0 \\ \widetilde{H}_u^0 \end{pmatrix}, \begin{pmatrix} \widetilde{H}_d^0 \\ \widetilde{H}_d^- \end{pmatrix}$	$ \begin{array}{c} \widetilde{\chi}_1^0, \widetilde{\chi}_2^0, \widetilde{\chi}_3^0, \widetilde{\chi}_4^0 \\ \text{Charginos} \\ \widetilde{\chi}_1^{\pm}, \widetilde{\chi}_2^{\pm} \end{array} $	
Graviton S = 2	G		Gravitino $S = \frac{3}{2}$	\tilde{G}		

18 / 12

CROSS-SECTIONS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □