

SEARCHES FOR DIRECT PAIR PRODUCTION OF THIRD GENERATION SQUARKS IN FINAL STATES WITH LEPTONS WITH THE ATLAS DETECTOR

Priscilla Pani (CERN) on behalf of the ATLAS Collaboration

Introduction and motivations

I II III

Symple \tilde{u} \tilde{c} \tilde{t} \tilde{v} \tilde{d} \tilde{s} \tilde{b} \tilde{g} \tilde{v}_{e} \tilde{v}_{μ} \tilde{v}_{τ} \tilde{v}_{μ} \tilde{v}_{τ} \tilde{e} $\tilde{\mu}$ $\tilde{\tau}$

- ★ Stops and sbottoms are key ingredients for SUSY and hierarchy problem solutions
- ★ Focus of this talk: stop searches with leptons and gauginos in the final state.
- ★ Question to be answered: is the stop phase space really well excluded for realistic models?

S. Amoroso (Moriond 2017)

Outlook of the ATLAS stop searches

Short Name	Reference	Target	Strategy
stop1L	<u>ATLAS-</u> <u>CONF-2017-037</u>	$ \tilde{t}_1 \to b\tilde{\chi}_1^{\pm} / t\chi_1^0 / t\chi_2^0 \tilde{t}_1 \to bff'\tilde{\chi}_1^0 / bW^{\pm}\tilde{\chi}_1^0 $	BDTs, multi-bin fits, multiple SR
stop2L	<u>ATLAS-</u> <u>CONF-2017-034</u>	$ \tilde{t}_1 \to b\tilde{\chi}_1^{\pm} / t\chi_1^0 / t\chi_2^0 \tilde{t}_1 \to bff'\tilde{\chi}_1^0 / bW^{\pm}\tilde{\chi}_1^0 $	multi-bin fits, multiple SR
stopZ/h	arXiv: 1706.03986	$ \tilde{t}_1 \to t \tilde{\chi}_2^0 $ $ \tilde{t}_2 \to \tilde{t}_1 h / \tilde{t}_1 Z $	multiple single-bin SRs
RPV 1L	arXiv: 1704.08493	$\tilde{t}_1 \to t\chi_1^0 / t\chi_2^0$ $\tilde{\chi}_{1,2}^0 \to tbs / sbb$	multi-bin fits
RPV b-1	<u>ATLAS-</u> CONF-2017-036	$\tilde{t}_1 \rightarrow b\ell$	multiple single-bin SRs

Stop1L in a nutshell

Final state: 1L (soft or hard) + bjets + ETmiss

- ★ Exploit the presence of 1 hadronic and 1 leptonic top decay (large R jet masses)
- ★ asymmetric stranverse mass to suppress di-lepton top in background

★ angular correlations between objects to enhance signal discrimination

shape-fits, BDT, cut-and-count am [GeV]

Details of the compressed analysis

tN_diag_low	Pure bino LSP $(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (190, 17)$	BDT cut-and-count	7
tN_diag_med	Pure bino LSP $(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (250,62)$	BDT shape-fit	7
tN_diag_high	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \chi_1^0) = (450,277)$	BDT shape-fit	7

BDT inputs

Recursive Jigsaw variables

$$\tilde{t}_1 \rightarrow t\chi_1^0$$

Stop2L in a nutshell

Final state: 2L (soft or hard) + ETmiss

- \star Exploit kinematic end-point of stranverse mass $\tilde{t}_1 \rightarrow t\chi_1^0$
- \star jigsaw analysis for $\tilde{t}_1 \to bW^{\pm}\tilde{\chi}_1^0$
- **Ratios of E_T^{miss} and pTs to enhance soft topologies $\tilde{t}_1 \to bff'\tilde{\chi}_1^0$

RPC quasi-simplified models

sparticle masses

$$ilde{t}_1, ilde{b}_1$$

$$ilde{t}_1$$

$$ilde{t}_1, (ilde{b}_1)$$

$$ilde{\chi}_{\mathbf{1}}^{\pm}, ilde{\chi}_{\mathbf{2}}^{0}$$

$$ilde{\chi}_{1}^{0}$$

$$ilde{\chi}_{1}^{0}$$

$$ilde{\chi}_{1}^{0}, ilde{\chi}_{1}^{\pm}, ilde{\chi}_{2}^{0}$$

$$ilde{\chi}_1^{\pm}, ilde{\chi}_2^0, ilde{\chi}_3^0 \\ ilde{\chi}_1^0$$

- a) pure bino LSP
- b) wino NLSP
- c) higgsino LSP
- d) bino/higgsino mix

$$\mathcal{BR}(\tilde{t}_1 \to t\tilde{\chi}_1^0) = 100\%$$

"standard" simplified model more complex chains than Run 1 benchmarks (pMSSM inspired)

Scenario a) Bino-LSP

Results along the diagonal

Scenario b) Wino N-LSP

$$ilde{t}_1, ilde{b}_1$$

$$ilde{\chi}_{1}^{\pm}, ilde{\chi}_{2}^{0}$$

 $\tilde{\chi}_{\mathbf{1}}^{0}$

b) wino NLSP

Parameter	M1, M2	М3	lμl	tan β	Ms	Xt
Value	M2=2*M1	2.2 TeV	high	20	1.2 TeV	Xt=Ms*√6

Scenario c) Higgsino LSP

$ ilde{\chi}_{1}^{0},$	$\tilde{\chi}_{1}^{\pm}$	

c) higgsino LSP

Parameter	$m(\!\chi_1^\pm)$	Δ m(χ_2^0 - χ_1^0)	lμl
Value	150 GeV	2Δ m(χ_1^{\pm} - χ_1^0)	low

soft 1L final states

Scenario d) Well tempered grid

 $0.10 < \Omega h^2 < 0.12$

1L final states

Searches with higgs and Z

★Simplified model targeting χ₂ decaying via Higgs or Z-boson.

- ★ Final states:
 - \rightarrow 3L + 1b
 - \rightarrow 1L + 4b
- ★ Backgrounds:
 - \rightarrow ttZ in 3L+1b
 - → ttbar in 1L+4b

RPV third generation summary

★ Multiple analyses dedicated to RPV in the 3rd generation sector:

2b2l final states

1L final states

details in S. Mehlhase's talk on Friday!

14

Conclusions and final remarks

- ★ Many new results from ATLAS for 3rd generation squark searches based on full 2015+2016 data (36 fb-1)
- ★ No significant excess found. Limits are significantly improved with respect to previous results
- ★ Stringent limits obtained in pMSSM inspired models, yet some part of the parameter space is still uncovered.

Backup

Details of the compressed analysis (I)

tN_diag_low	Pure bino LSP $(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (190, 17)$	BDT cut-and-count	7
tN_diag_med	Pure bino LSP $(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (250,62)$	BDT shape-fit	7
tN_diag_high	Pure bino LSP $(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (450,277)$	BDT shape-fit	7

BDT inputs

 $\Delta m_{\mathrm{T}}^{\alpha}$ (SM, signal)

 $m_{\mathrm{T}}, E_{\mathrm{T}}^{\mathrm{miss}}$

 $m(t_{\rm had}^{\rm ISR})$ and $m(t_{\rm lep}^{\alpha})$

 $\Delta \varphi$ tt system, lepton, $E_{
m T}^{
m miss}$

Details of the compressed analysis (II)

tN_diag_low	Pure bino LSP $(\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (190, 17)$	BDT cut-and-count	7
tN_diag_med	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (250,62)$	BDT shape-fit	7
tN_diag_high	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (450,277)$	BDT shape-fit	7

BDT inputs

 $m_{\mathrm{T}}, E_{\mathrm{T}}^{\mathrm{miss}}, H_{\mathrm{T}}^{\mathrm{sig}}$ nJets, pT(j3, j4)

 $\Delta R(b,\ell), m_{\text{top}}^{\chi}$

 $\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, t_{\mathrm{had}}^{\chi}), \Delta \phi(t_{\mathrm{had}}^{\chi}, t_{\mathrm{lep}}^{\chi})$

Signal region distribution

Bino LSP decays

stop1L summary

SR	Signal scenario	benchmark	Exclusion technique	Table
tN_med	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^0) = (600,300)$	shape-fit ($E_{ m T}^{ m miss}$)	6
tN_high	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (1000, 1)$	cut-and-count	6
tN_diag_low	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (190,17)$	BDT cut-and-count	7
tN_diag_med	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\chi}_1^0) = (250,62)$	BDT shape-fit	7
tN_diag_high	Pure bino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^0) = (450,277)$	BDT shape-fit	7
bWN	Pure bino LSP $(\tilde{t}_1 \rightarrow bW\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^0) = (350,230)$	shape-fit (am_{T2})	8
bffN	Pure bino LSP $(\tilde{t}_1 \rightarrow bff'\tilde{\chi}_1^0)$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^0) = (400,350)$	shape-fit $(p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}})$	8
bC2x_med	Wino NLSP $(\tilde{t}_1 \to b\tilde{\chi}_1^{\pm}, \tilde{t}_1 \to t\tilde{\chi}_2^{0})$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^{\pm}, \ \tilde{\mathcal{X}}_1^0) = (750,300,150)$	cut-and-count	9
bC2x_diag	Wino NLSP $(\tilde{t}_1 \to b\tilde{\chi}_1^{\pm}, \tilde{t}_1 \to t\tilde{\chi}_2^{0})$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^{\pm}, \ \tilde{\mathcal{X}}_1^0) = (650,500,250)$	cut-and-count	9
bCbv	Wino NLSP $(\tilde{t}_1 \to b\tilde{\chi}_1^{\pm}, \tilde{t}_1 \to t\tilde{\chi}_2^{0})$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^{\pm}, \ \tilde{\mathcal{X}}_1^0) = (700,690,1)$	cut-and-count	9
bCsoft_diag	Higgsino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0, \tilde{t}_1 \to t\tilde{\chi}_2^0, \tilde{t}_1 \to b\tilde{\chi}_1^{\pm})$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^{\pm}, \ \tilde{\mathcal{X}}_1^0) = (400,355,350)$	shape-fit $(p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}})$	10
bCsoft_med	Higgsino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0, \tilde{t}_1 \to t\tilde{\chi}_2^0, \tilde{t}_1 \to b\tilde{\chi}_1^{\pm})$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^{\pm}, \ \tilde{\mathcal{X}}_1^0) = (600, 205, 200)$	shape-fit $(p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}})$	10
bCsoft_high	Higgsino LSP $(\tilde{t}_1 \to t\tilde{\chi}_1^0, \tilde{t}_1 \to t\tilde{\chi}_2^0, \tilde{t}_1 \to b\tilde{\chi}_1^{\pm})$	$m(\tilde{t}_1, \ \tilde{\mathcal{X}}_1^{\pm}, \ \tilde{\mathcal{X}}_1^0) = (800, 155, 150)$	shape-fit $(p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}})$	10
DM_low_loose	spin-0 mediator	$m(\Phi/a, \chi)=(20,1)$	cut-and-count	11
DM_low	spin-0 mediator	$m(\Phi/a, \chi)=(20,1)$	cut-and-count	11
DM_high	spin-0 mediator	$m(\Phi/a, \chi)=(300,1)$	cut-and-count	11

Scenario a) Bino LSP

1L results scenario b)

