

Measurement of the SM Higgs boson mass in the diphoton and 4I decay channels using the ATLAS detector

Karolos Potamianos On behalf of the ATLAS Collaboration

Deutsches Elektronen-Synchrotron

EPS-HEP 2017 July 6, 2017

Higgs Boson Mass

- > The mass of the Higgs Boson (m_H) is not predicted by the SM: need to measure it
- Measurement required for precise calculation of EW observables
 - incl. Higgs production and decay properties
- ▶ High mass resolution (1-2%) channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

Measurement:

- \blacktriangleright m_H measured from the position of the peak in the 4 ℓ or $\gamma\gamma$ invariant mass distribution
- Using constraints on E and p scale and res. of leptons and photons from control samples

For latest Gfitter results, see talk by Thomas Peiffer

Channels

- Fully reconstructed Higgs boson
- \blacktriangleright BR $\sim 1.3 \times 10^{-4}$ @ 13 TeV
- ▶ High *S*/*B* ~ 2.3
- *m_H* resolution: 1-2% *m_H*

- $\blacktriangleright~$ BR $\sim 2 \times 10^{-3}$ @ 13 TeV
- ▶ Low S/B ~ 0.02
- *m_H* resolution: 1-2% *m_H*

More info in talks by Ruchi Gupta, Tamara Vazquez Schroeder, and Andrea Gabrielli

ATLAS Run-1: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

 2σ compatibility with individual channels (P = 4.8%) July 6, 2017 4 / 13

Object Reconstruction in Run-2

Global calorimeter energy scale (after energy corr.)

- Determined from $Z \rightarrow e^+e^-$
- $\blacktriangleright~$ Verified using $J/\psi \rightarrow e^+e^-$ and $Z \rightarrow \ell^+\ell^-\gamma$

Muon momentum and scale calib.

▶ Obtained from $J/\psi \rightarrow \mu^+\mu^$ and $Z \rightarrow \mu^+\mu^-$

Run 2 - $H \rightarrow ZZ^* \rightarrow 4\ell$

Common Event Selection (details in backup):

- ▶ 2 OS SF leptons, $p_T(\ell_1, \ell_2, \ell_3) > (20, 10, 15)$ GeV; 4th lepton: $p_T > (5, 7)$ GeV (μ, e)
 - Vtx_{4ℓ} cut to handle increase in bkg. due to muon $p_T^{\ell_4}$ cut relaxed from 6 to 5 GeV
- ▶ BDT $(p_T^{4\ell}, \eta_{4\ell}, \text{ME } K_D)$ separating $H \to ZZ^* \to 4\ell$ form $ZZ^* \to 4\ell$ (6% better mass res.)
- With m_Z constraint to improve 4-lepton mass resolution (15% improvement)
- ▶ Using events with 110 < m_{4ℓ} < 135 GeV</p>

Final state	Signal (125 GeV)	ZZ*	$Z + jets, t\bar{t}, WZ, ttV, VVV$	Expected	Observed
4μ	20.6 ± 1.7	15.9 ± 1.2	2.0 ± 0.4	38.5 ± 2.1	38
$2e2\mu$	14.6 ± 1.1	11.2 ± 0.8	1.6 ± 0.4	27.5 ± 1.4	34
2µ2e	11.2 ± 1.0	7.4 ± 0.7	2.2 ± 0.4	20.8 ± 1.3	26
4e	11.1 ± 1.1	7.1 ± 0.7	2.1 ± 0.4	20.3 ± 1.3	24
Total	57 ± 5	41.6 ± 3.2	8.0 ± 1.0	107 ± 6	122

Run 2 - $H \rightarrow ZZ^* \rightarrow 4\ell$ – Measurement

> Per-event method, using probability of measuring $m_{4\ell}^{\text{meas}}$ for a true mass $m_{4\ell}^{\text{true}}$:

$$S_{m_H}(m_{4\ell}^{\rm meas}) = \int_0^\infty F(m_{4\ell}^{\rm meas} - m_{4\ell}^{\rm true}) \cdot BW(m_{4\ell}^{\rm true}, m_H) \, dm_{4\ell}^{\rm true}$$

- Lepton energy response PDF parameterized as Σ³_{g=1} w_g · N(m^{meas}_{4ℓ} m^{true}_{4ℓ}; μ_g, σ_g), obtained separately for e and μ and depending on lepton energy and detector region
- Response function F derived from lepton energy response functions and parameterized as

$$F(m_{4\ell}^{\text{meas}} - m_{4\ell}^{\text{true}}) = \sum_{g=1}^{4} w_g \cdot \mathcal{N}(m_{4\ell}^{\text{meas}} - m_{4\ell}^{\text{true}}; \mu_g, \sigma_g)$$

(4 N obtained form $3^4 = 81 N$ distributions replacing close-by dist. by one, until 4 remain) Maximizing likelihood function (for N events)

$$L(m_{H}) = \prod_{k=1}^{N} \left[S_{m_{H}}^{(k)} \left(m_{4\ell}^{\text{meas}(k)} \right) + B \left(m_{4\ell}^{\text{meas}(k)} \right) \right]$$

▶ Validation using $Z \rightarrow 4\ell$ events: m_Z within 1.3 σ of world average (data)

Cross-check with template method: stat. unc. on same-size data sample is 1.4% larger

Run 2 - $H \rightarrow ZZ^* \rightarrow 4\ell$

ATLAS-CONF-2017-046

Systematic effect	Uncertainty on $m_H^{ZZ^*}$	[MeV]
Muon momentum scale	40	
Electron energy scale	20	
Background modelling	10	
Simulation statistics	8	

$m_{H}^{ZZ^{*}} = 124.88 \pm 0.37 \text{ (stat)} \pm 0.05 \text{ (syst)} \text{ GeV} = 124.88 \pm 0.37 \text{ GeV}$

Template method cross-check: $\Delta m_H = 0.16 \text{ GeV}$ uncertainty: $^{+0.41}_{-0.40} \text{ GeV}$ (stat \oplus sys) [+35 MeV]

m_H compatible with independent measurements in each channel

Run 2 - $H ightarrow \gamma \gamma$

Common Event Selection (details in backup):

- Final Two photons with $E_T > 25$ GeV and $|\eta| < 2.37$ (excl. $1.37 \le |\eta| \le 1.52$)
- Leading (sub-leading) photon with $E_T/m_{\gamma\gamma} > 0.35$ (0.25) with tight ID and isolation
- ▶ Using events with $105 \le m_{\gamma\gamma} \le 160$ GeV
- Using 31 categories with different $\sigma_{m_{\gamma}\gamma}$ and S/B
 - Categories optimized for measurement of simplified template cross-sections

$m_{H}^{\gamma\gamma} = 125.11 \pm 0.21 \; ({ m stat}) \pm 0.36 \; ({ m syst}) \; { m GeV} = 125.11 \pm 0.42 \; { m GeV}$

Systematic effect	$\delta m_H^{\gamma\gamma}$ [MeV]
LAr cell non-linearity	+200 -190
Layer calibration	± 190
Other material (not ID)	± 120
Lateral shower shape	± 110
ID material	± 110
Conversion reconstruction	± 50
Z ightarrow ee calibration	± 50
Background model	+30 -50
Signal model	±40
Primary vertex effect on mass scale	+30 -40

Consistency checks:

- Effect of mis-calibration checked using two categorization schemes, using
 - \blacktriangleright impact point in the calorimeter: $|\eta| <$ 1.37 (barrel, B) or $|\eta| >$ 1.52 (endcap, E)
 - conversion status: converted (C) or unconverted (U)

Effect of common μ (with SM relative ratios), instead of one per production mode: 20 MeV

Preliminary Run-2 Combination

$$\Lambda(m_{H}) = \frac{L(m_{H}, \hat{\mu}^{ZZ}(m_{H}), \hat{\mu}^{\gamma\gamma}_{\rm ggH}(m_{H}), \hat{\mu}^{\gamma\gamma}_{\rm VBF}(m_{H}), \hat{\mu}^{\gamma\gamma}_{\rm VH}(m_{H}), \hat{\mu}^{\gamma\gamma}_{\rm ttH}(m_{H}), \hat{\theta}(m_{H}))}{L(\hat{m}_{H}, \hat{\mu}^{ZZ}, \hat{\mu}^{\gamma\gamma}_{\rm ggH}, \hat{\mu}^{\gamma\gamma}_{\rm VBF}, \hat{\mu}^{\gamma\gamma}_{\rm VH}, \hat{\mu}^{\gamma\gamma}_{\rm ttH}, \hat{\theta})}$$

Channel	Mass measurement [GeV]
$H ightarrow ZZ^* ightarrow 4\ell$	$124.88 \pm 0.37~{ m (stat)} \pm 0.05~{ m (syst)} = 124.88 \pm 0.37$
$H ightarrow \gamma \gamma$	$125.11 \pm 0.21~({\sf stat}) \pm 0.36~({\sf syst}) = 125.11 \pm 0.42$
Combined	$124.98 \pm 0.19 \; ({\sf stat}) \pm 0.21 \; ({\sf syst}) = 124.98 \pm 0.28$

Good agreement with Run-1:

- ATLAS: m_H = 125.36 ± 0.41 GeV
- ATLAS+CMS: m_H = 125.09 ± 0.24 GeV

ATLAS-CONF-2017-046

$$\Delta m_{H}^{4\ell,\gamma\gamma} = 0.23 \pm 0.42 \text{ (stat)} \pm 0.36 \text{ (syst)}$$

= 0.23 ± 0.55 GeV

Source	Systematic uncertainty on m_H [MeV]
LAr cell non-linearity	90
LAr layer calibration	90
Non-ID material	60
ID material	50
Lateral shower shape	50
$Z \rightarrow ee$ calibration	30
Muon momentum scale	20
Conversion reconstruction	20

Summary

- ▶ Improved measurements of m_H in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels with 36.1 fb⁻¹ of data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV
- Using latest calibrations for muons, electrons, and photons, and improved analysis techniques w.r.t. Run-1

Result in excellent agreement with, and similar uncertainty to, LHC Run-1 average $m_H = 125.09 \pm 0.24$ GeV

K. Potamianos (DESY)

Backup Slides

References

▶ Phys. Rev. D. 90, 052004 (2014): "Measurement of the Higgs boson mass from the $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ channels with the ATLAS detector using 25 fb⁻¹ of pp collision data"

▶ ATLAS-CONF-2017-032: "Measurement of inclusive and differential fiducial cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel at 13 TeV with the ATLAS detector"

ATLAS-COM-CONF-2017-045: "Measurements of Higgs boson properties in the diphoton decay channel with 36.1 fb⁻¹ pp collision data at the center-of-mass energy of 13 TeV with the ATLAS detector"

▶ ATLAS-CONF-2017-046: "Measurement of the Higgs boson mass in the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels with $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector "

$H \rightarrow ZZ^* \rightarrow 4\ell$ Event Selection

Leptons and jets				
Muons:	$p_{\rm T} > 5 {\rm GeV}, \eta < 2.7$			
Electrons:	$p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$			
Jets:	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$			
Jet-lepton overlap removal:	$\Delta R(\text{jet}, \ell) > 0.1 (0.2) \text{ for muons (electrons)}$			
Lepton selection and pairing				
Lepton kinematics:	$p_{\rm T} > 20, 15, 10 {\rm ~GeV}$			
Leading pair (m_{12}) :	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Subleading pair (m_{34}) :	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $			
Event selection (at most one quadruplet per channel)				
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}$ and $12 < m_{34} < 115 \text{ GeV}$			
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$ for same- (different-) flavour leptons			
J/ψ veto:	$m(\ell_i, \ell_j) > 5$ GeV for all SFOS lepton pairs			
Mass window:	$115 \ GeV < m_{4\ell} < 130 \ GeV$			

$H\to\gamma\gamma$ Event Selection

Process	Measurement region	Stage 1 region
$ggH + gg \rightarrow Z(\rightarrow qq)H$	0-jet	0-jet
	1-jet, $p_T^H < 60 GeV$	1-jet, $p_T^H < 60 GeV$
	1-jet, $60 \le p_T^H < 120 GeV$	1-jet, $60 \le p_T^H < 120 GeV$
	1-jet, $120 \le p_T^H < 200 GeV$	1-jet, $120 \le p_T^H < 200 GeV$
	\geq 1-jet, $p_1^H > 200 GeV$	1-jet, $p_1^H > 200 GeV$
		≥ 2 -jet, $p_T^H > 200 GeV$
	\geq 2-jet, $p_T^H < 200 GeV$ or VBF-like	≥ 2 -jet, $p_T^H < 60 GeV$
		≥ 2 -jet, $60 \le p_T^H < 120 GeV$
		≥ 2 -jet, $120 \leq p_T^H < 200 GeV$
		VBF-like, $p_T^{H_{22}} < 25 GeV$
		VBF-like, $p_T^{H_{JJ}} \ge 25 GeV$
$qq' \rightarrow Hqq'$ (VBF + VH)	$p_T^2 < 200 GeV$	$p_T^2 < 200 GeV$, VBF-like, $p_{T_{corr}}^{H_{33}} < 25 GeV$
		$p_T^j < 200 GeV$, VBF-like, $p_T^{H_{JJ}} \ge 25 GeV$
		$p_T^2 < 200 GeV$, VH-like
		$p_T^2 < 200 GeV$, Rest
	$p_T^2 > 200 GeV$	$p_T^2 > 200 GeV$
VH (leptonic decays)	VH leptonic	$q\bar{q} \rightarrow ZH$, $p_T^2 < 150 \text{ GeV}$
		$q\bar{q} \rightarrow ZH$, 150 GeV $< p_T^2 < 250$ GeV, 0-jet
		$q\bar{q} \rightarrow ZH$, 150 GeV $< p_T^2 < 250$ GeV, ≥ 1 -jet
		$q\bar{q} \rightarrow ZH, p_T^{+} > 250 \text{ GeV}$
		$q\bar{q} \rightarrow WH$, $p_T^w < 150 \text{ GeV}$
		$q\bar{q} \rightarrow WH$, 150 GeV $< p_T^m < 250$ GeV, 0-jet
		$q\bar{q} \rightarrow WH$, 150 GeV $\langle p_T^{*} \rangle \langle 250 \text{ GeV}, \geq 1$ -jet $\gamma_{T}^{*} \rightarrow WH$, $\gamma_{W}^{*} \rightarrow \rho_{T}^{*} \circ \rho_{T}^{*} \vee \rho_{T}^{*}$
		$q\bar{q} \rightarrow W H, p_T > 200 \text{ GeV}$ $q\bar{q} \rightarrow Z H, -Z \neq M0, CeV$
		$gg \rightarrow ZH$, $p_T < 150 \text{ GeV}$
		$gg \rightarrow ZH$, $p_T > 150 \text{ GeV}$, 0 -jet
top associated association	top	$gg \rightarrow ZH$, $p_T > 150 \text{ GeV}$, ≥ 1 -jet HH
top-associated production	top .	tHW
		tHob
bbH	merged w/ ggH	ын

Category	Selection
tH lep 0fwd	$N_{\text{lep}} = 1$, $N_{\text{lers}}^{\text{cen}} \le 3$, $N_{\text{b-tag}} \ge 1$, $N_{\text{lers}}^{\text{fwd}} = 0$ ($p_T^{\text{let}} > 25 \text{ GeV}$)
tH lep 1fwd	$N_{\text{tep}} = 1$, $N_{\text{iets}}^{\text{con}} \le 4$, $N_{\text{b-tag}} \ge 1$, $N_{\text{iets}}^{\text{fed}} \ge 1$ ($p_{\text{T}}^{\text{iet}} > 25 \text{ GeV}$)
ttH lep	$N_{\text{tep}} \ge 1$, $N_{\text{iets}}^{\text{cen}} \ge 2$, $N_{\text{b-tag}} \ge 1$, $Z_{\ell\ell}$ veto $(p_T^{\text{jet}} > 25 \text{ GeV})$
ttH had BDT1	$N_{lep} = 0, N_{jets} \ge 3, N_{h-tag} \ge 1, BDT_{ttH} > 0.92$
ttH had BDT2	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{\text{h-tag}} \ge 1, 0.83 < \text{BDT}_{ttH} < 0.92$
ttH had BDT3	$N_{\text{lep}} = 0$, $N_{\text{jets}} \ge 3$, $N_{\text{b-tag}} \ge 1$, 0.79 < BDT _{ttH} < 0.83
ttH had BDT4	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{\text{b-tag}} \ge 1, 0.52 < \text{BDT}_{ttH} < 0.79$
tH had 4j1b	$N_{\text{tep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{\text{b-tag}} = 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{ GeV})$
tH had 4j2b	$N_{\text{lep}} = 0$, $N_{\text{jets}}^{\text{con}} = 4$, $N_{\text{h-tag}} \ge 2 \ (p_T^{\text{jet}} > 25 \text{ GeV})$
VH dilep	$N_{\text{lep}} \ge 2, 70 \text{ GeV} \le m_{\ell\ell} \le 110 \text{ GeV}$
VH lep HIGH	$N_{\text{lep}} = 1$, $ m_{e\gamma} - 89 \text{ GeV} > 5 \text{ GeV}$, $p_T^{t+E_T^{mins}} > 150 \text{ GeV}$
VH lep LOW	$N_{\text{lep}} = 1$, $ m_{e\gamma} - 89 \text{ GeV} > 5 \text{ GeV}$, $p_{\pi}^{l+E_T^{\text{prime}}} < 150 \text{ GeV}$, E_{π}^{miss} significance > 1
VH MET HIGH	$150 \text{ GeV} < E_{\pi}^{\text{minus}} < 250 \text{ GeV}, E_{\pi}^{\text{minus}} \text{ significance } > 9 \text{ or } E_{\pi}^{\text{minus}} > 250 \text{ GeV}$
VH MET LOW	$80 \text{ GeV} < E_T^{\text{mbss}} < 150 \text{ GeV}, E_T^{\text{mbss}} \text{ significance} > 8$
jet BSM	$p_{T,11} > 200 \text{ GeV}$
jet BSM VH had tight	$p_{T,11} > 200 \text{ GeV}$ 60 GeV $< m_{jj} < 120 \text{ GeV}, \text{BDT}_{VH} > 0.78$
VH had tight VH had loose	$\begin{array}{l} p_{T,11} > 200 \text{ GeV} \\ 60 \text{ GeV} < m_{[1]} < 120 \text{ GeV}, \text{ BDT}_{VH} > 0.78 \\ 60 \text{ GeV} < m_{[1]} < 120 \text{ GeV}, 0.35 < \text{ BDT}_{VH} < 0.78 \end{array}$
jet BSM VH had tight VH had loose VBF tight, high p_T^{Hjj}	$\begin{array}{l} p_{T,11} > 200 \text{GeV} \\ 60 \text{GeV} < m_{II} < 120 \text{GeV}, \text{BDT}_{VII} > 0.78 \\ 60 \text{GeV} < m_{II} < 120 \text{GeV}, 0.35 < \text{BDT}_{VII} < 0.78 \\ 0.6 \text{GeV} < m_{II} < 120 \text{GeV}, 0.35 < \text{BDT}_{VII} < 0.78 \\ 0.01 > 2, \left p_{\gamma} - 0.5 (\eta_1 + \eta_2) \right < 5, P_T^{JJJ} > 25 \text{GeV}, \text{BDT}_{VIIF} > 0.47 \end{array}$
$\begin{tabular}{c} \hline j et BSM \\ \hline VH had tight \\ \hline VH had loose \\ \hline VBF tight, high p_T^{Hjj} \\ \hline VBF loose, high p_T^{Hjj} \\ \hline \end{tabular}$	$\begin{array}{l} p_{T_{11},1} > 200 \text{ GeV} \\ 60 \text{ GeV} < m_{11} < 120 \text{ GeV}, \text{BDT}_{VH} > 0.78 \\ 60 \text{ GeV} < m_{11} < 120 \text{ GeV}, 0.35 < \text{BDT}_{VH} < 0.78 \\ Am_{11} > 2, [n_{Y_{12}} - 0.5(m_{11} + n_{22})] < 5, p_{21}^{P_{11}} > 25 \text{ GeV}, \text{BDT}_{VHF} > 0.47 \\ Am_{12} > 2, [n_{Y_{12}} - 0.5(m_{11} + n_{22})] < 5, p_{21}^{P_{11}} > 25 \text{ GeV}, -0.32 < \text{BDT}_{VHF} < 0.47 \\ Am_{12} > 2, [n_{Y_{12}} - 0.5(m_{11} + n_{22})] < 5, p_{21}^{P_{11}} > 25 \text{ GeV}, -0.32 < \text{BDT}_{VHF} < 0.47 \\ \end{array}$
jet BSM VH had tight VH had loose VBF tight, high p_{HJJ}^{HJJ} VBF loose, high p_{HJJ}^{HJJ} VBF tight, low p_{HJ}^{HJJ}	$\begin{array}{l} p_{T,H} \geq 200 \mathrm{GeV} \\ \mathrm{GrdW} < m_{H} < 120 \mathrm{GeV}, \mathrm{BDT_{VH}} > 0.78 \\ \mathrm{GrdW} < m_{H} < 120 \mathrm{GeV}, 0.35 < \mathrm{BDT_{VH}} < 0.78 \\ \mathrm{Ga}_{H} > 2, (p_{T} - 0.5)(q_{H} + p_{H}) < 5.6 \\ \mathrm{GrdW} > 1, p_{T} - 0.5)(q_{H} + p_{H}) < 5.6 \\ \mathrm{GrdW} > 1, p_{T} - 0.5)(q_{H} + p_{H}) < 5.6 \\ \mathrm{GrdW} > 100 \\$
$\begin{array}{c} \text{jet BSM} \\ \hline \text{VH had tight} \\ \hline \text{VH had losse} \\ \hline \text{VBF tight, high } p_{T^{JJ}}^{HJ} \\ \hline \text{VBF losse, high } p_{T^{JJ}}^{HJ} \\ \hline \text{VBF tight, low } p_{TJ} \\ \hline \text{VBF losse, low } p_{TJ}^{HJ} \\ \hline \end{array}$	$ \begin{array}{l} p_{TH} \geq 200 \mathrm{GeV} \\ \mathrm{GrdN} < m_{\mathrm{H}} < 100 \mathrm{GeV} \\ \mathrm{BD} T_{\mathrm{VT}} > 0.78 \\ \mathrm{GrdN} < m_{\mathrm{H}} < 100 \mathrm{GeV} \\ \mathrm{BD} T_{\mathrm{VT}} > 0.78 \\ \mathrm{GrdN} < m_{\mathrm{H}} < 100 \mathrm{GeV} \\ \mathrm{BD} T_{\mathrm{VT}} > 0.07 \\ \mathrm{GeV} $
jet BSM VH had tight VH had lose VBF tight, high p ^{Hjj} VBF lose, high p ^{Hjj} VBF tight, low p ^{Hjj} VBF lose, low p ^{Hjj} VBF lose, low p ^{Hjj} gH 2J BSM	$\begin{array}{l} p_{T(1)} > 200GM \\ & 0GM < m_{1} < 120GM , BDT_{VR} > 0.78 \\ & 0GM < m_{1} < 120GM , BD < S \\ & 0GM < m_{1} < 12 \\ & m_{1} < 0 \\ & (m_{1} > 2 \\ & (m_{1} - 0) \\ & (m_{1} + m_{1}) < 5 \\ & (m_{1} - 1) \\ & (m_{1}$
jet BSM VH had tight VH had tose VBF tight, high pr VBF tight, high pr UBF tight, low pr VBF tight, low pr VBF tight, low pr gH 2J BSM ggH 2J HIGH	$\begin{array}{l} p_{T_{\rm HI}} > 200{\rm GeV} \\ 0.60{\rm GeV} < m_{\rm HI} < 120{\rm GeV}, {\rm BD}{\rm Yep} > 0.78 \\ 0.60{\rm GeV} < m_{\rm HI} < 120{\rm GeV}, {\rm BD}{\rm Yep} > 0.78 \\ 0.60{\rm GeV} < m_{\rm HI} < 10{\rm geV}, {\rm BD}{\rm Yep} > 0.61 \\ 0.00{\rm GeV}, {\rm BD}{\rm SD} > 0.61 \\ 0.00{\rm GeV},$
jet BSM VH had tight VH had loose VBF tight, high p ^{HJJ} VBF loose, high p ^{HJJ} VBF loose, low p ^{HJJ} VBF loose, low p ^{HJJ} ggH 2J HSM ggH 2J MED	$ \begin{split} p_{F,H} &\geq 300GM \\ GM(V < m_q < 100GM > 0.01 \times 0.01$
jet BSM VH had tight VBF loose high provident VBF loose, high provident VBF loose, high provident VBF loose, low provident ggH 2J BSM ggH 2J BSM ggH 2J MED ggH 2J LOW	$\begin{split} p_{T_{11}} &\geq 200 GM \\ &GGV < m_{11} < (210 GV, BDT_{VH} > 0.75 \\ &GGV < m_{11} < (210 GV, BDT_{VH} > 0.75 \\ &GGV < m_{11} < (210 GV, BDT_{VH} > 0.67 \\ &M_{11} > 2, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{11}} > 26 GV, BDT_{VH} > 0.47 \\ &M_{12} > 2, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{21}} > 26 GV, -0.32 \\ &M_{11} > 2, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{21}} > 26 GV, -0.32 \\ &M_{11} > 2, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{21}} > 26 GV, -0.32 \\ &M_{12} > 1, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{21}} > 26 GV, -0.32 \\ &M_{12} > 1, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{21}} > 26 GV, -0.32 \\ &M_{12} > 1, h_{11} - 0.0h_{11} + h_{21} < h_{11}^{P_{21}} > 26 GV, -0.32 \\ &M_{12} > 1, h_{11} - 0.0h_{11} > 0.0h_{11} > 0.0h_{11} \\ &M_{12} > 1, h_{11} - 0.0h_{11} > 0.0h_{11} \\ &M_{12} > 1, h_{11} - 0.0h_{11} > 0.0h_{11} \\ &M_{12} > 0.0h_{11} > 0.0h_{11} > 0.0h_{11} \\ &M_{12} > 0.0h_{11} > 0.0h_{11} > 0.0h_{11} \\ &M_{12} > 0.0h$
jet BSM VH had tight VH had toge VBF tight, high p ¹⁷¹⁷ VBF loose, high p ¹⁷¹⁷ VBF loose, high p ¹⁷¹⁷ VBF loose, loog p ¹⁷¹⁷ VBF loose, loog p ¹⁷¹⁷ ggH 2J BSM ggH 2J HIGH ggH 2J LOW ggH 1J ISBM	$\begin{array}{l} p_{T,U} > 200GM\\ GGW < m_q < 126GV, BDY_{WI} > 0.78\\ GGW < m_q < 126GV, BDY_{WI} > 0.78\\ GGW < m_q < 126GV, BDY_{WI} < 0.78\\ M_{10} > 2.5 \ (m_{1-}-0.50)\ (m_{1-}+m_{1-}) < 5.6 \ (m_{1-})\ (m_{1$
jet BSM VH had loose VB had loose VBF loose, had pr VBF loose, had pr VBF loose, had pr yBF loose, hav pr sgR 12 BSM sgH 21 HIGH sgH 21 JMED sgH 21 LOW ggH 1J BSM sgH 1J HIGH	$\begin{split} p_{F(1)} &\geq 300 GV' \\ GU(X) &\leq 0.00 GV(100 Y_{10} X_{10} X_{1$
jet BSM VH had tight VBF tight, high p ^{HJJ} VBF toge, high p ^{HJJ} ggH 2J HSM ggH 2J HSM ggH 2J MED ggH 2J MED ggH 1J HSM ggH 1J HSM ggH 1J MED	$\begin{split} p_{F,U} &\geq 300 GV \\ &GGV < m_q < 126GV, BDY_{WI} > 0.78 \\ &GGV < m_q < 126GV, BDY_{WI} > 0.78 \\ &GGV < m_q < 100, -2.1 \ (m_q - 0.50), + m_q) < 0.78 \\ &M_D > 2.1 \ (m_q - 0.50), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.50), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.50), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.50), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.50), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.78 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 2.5 \ (m_q - 0.60), + m_q) < 0.87 \\ &M_D > 0.87 \\ &M_D >$
jet BSM VH had loose VBF tight, high p ^{H73} VBF tight, high p ^{H73} VBF toght, high p ^{H73} VBF toget, high p ^{H73} VBF toget, hew p ^{H7} ggH 2J BSM ggH 2J MED ggH 2J MED ggH 2J MED ggH 2J MED ggH 2J MED ggH 2J MED ggH 1J MED ggH 1J MED ggH 1J MED	$\begin{array}{l} p_{F,H} \geq 300 GW \\ GGW < m_{H} < 130 GW \\ GGW \\ GGW$
jet BSM VH had toph VBF toph had boase VBF toph, high p ^{HJ} ₂ VBF tops, high p ^{HJ} ₂ VBF tops, high p ^{HJ} ₂ VBF tops, high p ^{HJ} ₂ we p ^{HJ} ₂ 10 KM ggH 2J BSM ggH 2J HCH ggH 2J MED ggH 1J HCH ggH 1J MED ggH 1J MED ggH 1J MED ggH 1J COW	$\begin{split} p_{F(1)} &\geq 300 GV' \\ &GGV < m_{0}^{-1} < (300 CV) \ 100 V_{10} > 0.3 N_{10}^{-1} < 0.3 N_{10}^{-1} > 0.3 N_{10}^{-1}$

ATLAS Preliminary H → YY, m_µ = 125.09 GeV

Modeling

Process	Generator	Showering	PDF set	Order of calculation	$\frac{\sigma[\text{pb}]}{\sqrt{s} = 13 \text{ TeV}}$
ggH	Powheg NNLOPS	Pythia8	PDF4LHC15	$N^{3}LO(QCD)+NLO(EW)$	48.52
VBF	Powheg Box	Pythia8	PDF4LHC15	NNLO(QCD)+NLO(EW)	3.78
WH	Powheg Box	Pythia8	PDF4LHC15	NNLO(QCD)+NLO(EW)	1.37
$q\bar{q}' \rightarrow ZH$	Powheg Box	Pythia8	PDF4LHC15	NNLO(QCD)+NLO(EW)	0.76
$gg \rightarrow ZH$	Powheg Box	Pythia8	PDF4LHC15	NNLO(QCD)+NLO(EW)	0.12
$t\bar{t}H$	MadGraph5_aMC@NLO	Pythia8	NNPDF3.0	NLO(QCD)+NLO(EW)	0.51
$b\bar{b}H$	MadGraph5_aMC@NLO	Pythia8	CT10	5FS(NNLO)+4FS(NLO)	0.49
$tHq\bar{b}$	MadGraph5_aMC@NLO	Pythia8	CT10	4FS(LO)	0.07
tHW	MadGraph5_aMC@NLO	Herwig++	CT10	5FS(NLO)	0.02
$\gamma\gamma$	Sherpa	Sherpa	CT10		