

Search of a high mass neutral Higgs boson in fermion final states with the ATLAS detector.

Gaetano Αθανάσιος Barone Brandeis University On behalf of the ATLAS collaboration

European Physical Society Meeting Venice, July 2017

Introduction

- Heavy neutral Higgs bosons predicted by several Standard Model extensions, in particular
 - Minimal super symmetric Standard Model (MSSM)
 - Two Higgs doublet model (2HDM)
 - + CP even neutral doublet (h,H) and CP odd pseudo scalar A and two scalars H^{\pm}
 - motivated also by dark matter axion models

- Present recent searches for high mass neutral Higgs boson in fermion final states with the ATLAS detector
 - 1. $A/H \rightarrow t\overline{t}$
 - 2. $A/H \rightarrow \tau \overline{\tau}$

 $A/H \rightarrow t\overline{t}$

- Decays of A/H to $t\overline{t}$ enhanced for $\tan\beta < 3$ and $m_{A/H} > 500$ GeV.
 - Parameter region not probed by previous searches.

• Significant interference between $gg{
ightarrow} t\overline{t}\,$ production and $A/H{
ightarrow} t\overline{t}\,$

- for $m_{A/H}$ above $t\overline{t}$ threshold, for LHC $t\overline{t}$ main production
- Resonant shape distorted to a peak-dip structure.

CERN-EP-2017-134

- Analysis in the lepton (l) plus jets (j) final state
 - One lepton (e or μ) with $p_T(\ell) > 25$ GeV.

 $A/H \rightarrow tt$

- At least four anti- $k_T(4)$ jets with $p_T(j) > 25$ GeV.
- $E_T^{\text{miss}} > 20 \text{ GeV} \text{ and } E_T^{\text{miss}} + m_T^{\text{W}} > 60 \text{ GeV}.$
- Events / 40 GeV Data 2012 **ATLAS** Preliminary 10⁵ $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ SM tt Lepton+jets SM W+jets 10⁴ All signal regions Other SM Uncertainty 10³ 10² 10 Data/Bkg 1.1 $m_{A/H}$ =500 GeV, tan β =0.68 — A→tť(S+I)×3 H→tť(S+I)×3 1.05 Pre-fit background 0.95 400 800 1000 600 1200 1400 1600 m_#^{reco} [GeV]
- Considering only resolved kinematics
 W+jets and Multijet contributions
 Most efficient strategy for m_{A/H} <800 GeV
 estimated from data.
- Event classification into six categories Leading unce
 - Kinematic χ^2 for jet association to W

- es Leading uncertainties
 - Jet modelling ~6% on B and ~9% on S+I
 - $t\overline{t}$ modelling ~7% (m_t and pdf)

$A/H \rightarrow t\overline{t}$

CERN-EP-2017-134

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = \sqrt{\mu} \cdot (S + I) + (\mu - \sqrt{\mu}) \cdot S + B$$

• CL_s limits taking into account signal (S), background (B) and interference (I)

6

▶ $tan\beta < 0.7$ for m_A =550 GeV and $tan\beta < 0.72$ for m_H =550 GeV

• First and strictest limits in this this parameter region

More details in <u>Katharina Behr's poster</u> and <u>Saverio D'Auria's talk</u>

August-17

$(A/H \rightarrow \tau \overline{\tau})$

ATLAS-CONF-2017-050

good good

- For large tan $\beta A/H$ couplings to leptons and down quarks enhanced.
 - Increased branching fractions to τ -leptons --
- Dominant production modes:
 - gluon gluon fusion for low $\tan\beta$,
 - *b*-associated production for high tan β

Events are split into two categories:
b-tag veto category: no b-jets in production.
N(b-jets) >0 associated b-jet production.
G. Barone 3

$A/H \rightarrow \tau \overline{ au}$

- T reconstruction and event selection
- Two τ decay modes are considered:
 - All hadronic final state $(\tau_{had}\tau_{had})$.
 - Semileptonic final state $(\tau_{lep}\tau_{had})$.

T _{lep} T _{had}	Thad Thad
One τ_{had} with $p_T > 25$ GeV $ \Delta \varphi(\ell, \tau_{had}) > 2.4$ rad $m_T(\ell, E_T^{miss}) < 40$ GeV	At least two τ_{had} with $p_T > 65$ GeV $ \Delta \varphi(\tau_{had}, \tau_{had}) > 2.7$ rad

- Dominant backgrounds estimated from data
 - Estimate rates of jets faking taus by inverting identification criteria

$$f(\mathbf{x}) \equiv \frac{N_{\text{data}}^{\text{pass}}(\mathbf{x}) - N_{\text{bkg}}^{\text{pass}}(\mathbf{x})}{N_{\text{data}}^{\text{fail}}(\mathbf{x}) - N_{\text{bkg}}^{\text{fail}}(\mathbf{x})}$$

• from regions in data enhancing the Mulitjet background, $t \bar{t}$ and W+jets

$(A/H \rightarrow \tau \overline{\tau})$

August-17

- Reconstruction of $\tau \overline{\tau}$ final states.
 - Two τ decay modes are considered:
 - + All hadronic final state $(\tau_{had}\tau_{had})$ both τ decay hadronically.
 - Semileptonic final state $(\tau_{lep}\tau_{had})$ one τ decays hadronically and one leptonically.
 - Discriminant is total transverse mass:

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(\mathbf{p}_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

- Missing energy challenges $m_{\tau\tau}$
- Backgrounds larger component in longitudinal axis.

ATLAS-CONF-2017-050

- Results from profile likelihood fit on transverse mass m_T^{tot}
- Model independent limits on $\sigma \times BR$ (H/A) production
 - Separately for ggF production and b-associated production.
 - Limits from 200 GeV to > 2.0 TeV on m_{ϕ}
 - Narrow-width assumption of ϕ

 m_{ϕ} [GeV]

 $A/H \rightarrow \tau \overline{\tau}$

11

8 8 8 TT TT

- Results interpreted as limits on MSSM and hMSSM models
 - For hMSSM $tan\beta > 1.0$ for $m_A=0.25$ TeV and $tan\beta > 45$ for $m_A=1$ TeV excluded.
 - For $m_h^{\text{mod}+} \tan\beta > 5.3$ for $m_A=0.25$ TeV and $\tan\beta > 54$ for $m_A=1$ TeV excluded
 - + Presence of low mass neutralinos decrease $A/H \rightarrow \tau \tau$ branching fraction

More details of the $Z' \rightarrow \tau \overline{\tau}$ limits in <u>Giacomo Artoni's talk</u> G. Barone

Conclusions

Conclusion

- ATLAS has good sensitivity to standard models extensions
- Searches for new phenomena a involving heavy neutral scalar production
 - Decaying into quarks (t) and leptons (τ)
- Carried novel experimental techniques to constrain the background.
 - Multivariate T identification, background suppression.
- Model independent limits
 - Interpretations on MSSM limits also given.

Additional material

• T reconstruction and event selection

 $A/H \rightarrow \tau \overline{\tau}$

8 8 8 T

G. Barone

$ au_{lep} au_{had}$	ThadThad
One τ_{had} with $p_T > 25$ GeV	At least two τ_{had} with $p_T > 65$ GeV
$ \Delta arphi(oldsymbol{\ell}, au_{ ext{had}}) > 2.4$ rad	$ \Delta arphi(au_{ ext{had}}, au_{ ext{had}}) > 2.7$ rad
$m_{\mathrm{T}}(\boldsymbol{\ell}, E_{\mathrm{T}}^{\mathrm{miss}}) < 40 \mathrm{GeV}$	

- Hadronic T decays: one or more charged particles, a neutrino and π^0
- Visible decay products identification based on multivariate technique
- ▶ 50% to 60% identification efficiencies measured on $Z \rightarrow \tau \tau$

$H/A \rightarrow \tau \overline{\tau}$

- \bullet Hadronic tau decays: one or more charged particles, a neutrino and $\pi^{\scriptscriptstyle 0}$
- Visible decay products ID based on multivariate technique
 - Rejection of jets faking a tau lepton.

<u>அ</u>2000

Data (8 TeV 5.0 fb^{-1})

ATLAS

- Shower shapes and track multiplicities.
- 50% to 60% identification efficiencies measured on $Z \rightarrow \tau \tau$

17

• In τ leptonic decays E_{τ}^{miss} stringent requirements

Data (8 ToV 5.0 fb^{-1})

• Results from profile likelihood fit on transverse mass m_{T}^{tot}

 $A/H \rightarrow \tau \overline{\tau}$