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Introduction

2

EPS 2017

• Present recent searches for high mass neutral Higgs boson in fermion final 
states with the ATLAS detector

1. A/H→ tt̅ 
2. A/H→ ττ̅

• Heavy neutral Higgs bosons predicted by several Standard Model 
extensions, in particular 

‣ Minimal super symmetric Standard Model (MSSM)

‣ Two Higgs doublet model (2HDM)

✦ CP even neutral doublet (h,H) and CP odd pseudo scalar A and two scalars H±

✦ motivated also by dark matter axion models 
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A/H→ tt̅
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A/H→ tt̅
• Decays of A/H to tt̅ enhanced for tanβ<3 and mA/H > 500 GeV.  
‣ Parameter region not probed by previous searches.  

• Significant interference between gg→tt̅  production and A/H→tt̅
‣ for mA/H  above tt̅ threshold, for LHC tt̅  main production
‣ Resonant shape distorted to a peak-dip structure. 

4
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A/H→ tt̅

5

• Analysis in the lepton (ℓ) plus 
jets (j) final state

‣ One lepton (e or μ) 
with  pT(ℓ) > 25 GeV.

‣ At least four anti-kT(4) jets with  
pT(j) > 25 GeV. 

‣ ET
miss >20 GeV and ET

miss +mTW > 
60 GeV. 

• Considering only resolved kinematics

‣ Most efficient strategy for mA/H <800 GeV 

• Event classification into six categories 
‣ Kinematic χ2 for jet association to W

• W+jets and Multijet contributions 
estimated from data. 

• Leading uncertainties 

‣ Jet modelling  ~6% on B and 
~9% on S+I

‣ tt̅ modelling ~7% (mt and pdf)

CERN-EP-2017-134
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A/H→ tt̅

• CLs limits taking into account signal (S), background (B) and interference (I)

‣ tanβ < 0.7 for mA=550 GeV  and tanβ < 0.72 for mH=550 GeV 

• First and strictest limits in this this parameter region

6

Pseudo scalar Scalar Degenerate

DRAFT
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Figure 2: The mreco
t t̄

distribution in data and after the profile-likelihood fit under the background-only hypothesis for
all signal regions combined. The total background before the fit is indicated by a dashed line. The solid red line in
the bottom panel shows the S + I distribution (scaled by a factor of three) for mH � mA = 500 GeV, tan � = 0.68
relative to the total background. The last bin includes overflow events.

The exclusion limits are derived separately for each parameter point from a profile-likelihood fit [52] of168

the expected mreco
t t̄

distributions to the observed ones simultaneously in all signal regions, taking both169

the statistical and systematic uncertainties into account as nuisance parameters [12]. Only bins with170

mreco
t t̄
> 320 GeV are considered to avoid threshold e�ects that are not well described by the simulation.171

The shape of the binned mreco
t t̄

distributions in the presence of interference is parameterized in terms of172

the signal strength µ as follows [17, 53]:173

µ · S + pµ · I + B =
p
µ · (S + I) + (µ � pµ) · S + B. (1)

The fitted variable ispµ and the case µ = 1 corresponds to the type-II 2HDM in the alignment limit, while174

the case µ = 0 corresponds to the background-only hypothesis. This approach relies on the assumption175

that, for a given parameter point, the shape of the tt̄ invariant mass distributions for S and S + I in176

Eq. (1) does not change if the signal strength is varied. The terms S + I and S on the right-hand side177

of Equation (1) are obtained from the simulated S + I and S signal samples. The term B is determined178

from the mass spectra of the expected total SM background, which is dominated by events from SM tt̄179

production. The level of agreement between the observed and expected mass spectra is quantified in a fit180

under the background-only hypothesis with µ = 0 in which only the nuisance parameters are allowed to181

vary. The observed mass spectra are compatible with the expected spectra after the background-only fit182

within the (constrained) uncertainty bands, as shown in Figure 2.183

The upper limits on µ at 95% confidence level (CL) are obtained with the CLs method [54] for all parameter184

values at which signal samples are available. The upper limits at intermediate points are obtained from185

a linear interpolation among the three closest points. In Figure 3, the observed and expected exclusion186

regions for the type-II 2HDM (µ = 1) are shown for the three mass hierarchies discussed in the introduction.187

The excluded values of tan � for the di�erent mass hypotheses are listed in Table 3.188
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A/H→ ττ̅
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A/H→ ττ̅
• For large tanβ A/H couplings to leptons and down quarks enhanced.
‣ Increased branching fractions to τ-leptons

• Dominant production modes:
‣ gluon gluon fusion for low tanβ, 
‣ b-associated production for high tanβ
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Figure 1: Lowest-order Feynman diagrams for gluon fusion (a) and b-associated production in the four-flavour (b)
and five-flavour (c) schemes of a neutral MSSM Higgs boson. Feynman diagram for Drell–Yan production of a Z 0

boson at lowest order (d).

2 ATLAS detector93

The ATLAS detector [48] at the LHC covers nearly the entire solid angle around the collision point. It94

consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic95

and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroid96

magnets. The inner-detector system is immersed in a 2 T axial magnetic field and provides charged97

particle tracking in the range |⌘ | < 2.5.298

The high-granularity silicon pixel detector covers the vertex region and typically provides four meas-99

urements per track, the first hit being normally in the innermost layer. This closest layer, known as the100

Insertable B-Layer [49, 50], was added in 2014 and provides high-resolution hits at small radius to improve101

the tracking performance. The pixel detector is followed by the silicon microstrip tracker, which provides102

four three-dimensional measurement points per track. These silicon detectors are complemented by the103

transition radiation tracker, which enables radially extended track reconstruction up to |⌘ | = 2.0. The104

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and
the z-axis along the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (r, �) are used in the transverse plane, � being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle ✓ as ⌘ = � ln tan(✓/2). Angular distance is measured in units of
�R ⌘

q
(�⌘)2 + (��)2.
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• Events are split into two categories: 
‣ b-tag veto category: no b-jets in production. 
‣ N(b-jets)>0 associated b-jet production.
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A/H→ ττ̅
• τ reconstruction and event selection 

• Dominant backgrounds estimated from data

‣ Estimate rates of jets faking taus by 
inverting identification criteria

‣ from regions in data enhancing the 
Mulitjet background, t t̅ and W+jets

9

 τlepτhad τhadτhad

One τhad with pT >25 GeV 

|Δφ(ℓ, τhad)| > 2.4 rad

mT(ℓ,ETmiss)< 40 GeV 

At least two τhad with pT >65 GeV 

|Δφ(τhad, τhad)| > 2.7 rad

N
o

t
r
e
v

i
e
w

e
d

,
f
o

r
i
n

t
e
r
n

a
l

c
i
r
c
u

l
a

t
i
o

n
o

n
l
y

DRAFT

with minor contributions from Z/�⇤ ! ll, diboson and single top-quark production. These contributions253

are estimated using simulation. Corrections are applied to the simulation to account for mismodelling of254

the trigger, reconstruction, identification and isolation e�ciencies, the electron to ⌧had-vis misidentification255

rate and the momentum scales and resolutions. To help constrain the normalisation of the tt̄ contribution,256

a control region rich in tt̄ events (TCR) is defined and included in the statistical fitting procedure. Events257

in the TCR must pass the signal selection, but the mT selection is replaced by mT > 110(100) GeV in the258

⌧e⌧had (⌧µ⌧had) channel. The region has ⇠90% tt̄ purity.259

The dominant background in the ⌧had⌧had channel is multijet production, which is estimated using a fake-260

factor technique similar to the ⌧lep⌧had channel, described in Section 6.2. Other important background261

contributions come from Z/�⇤ ! ⌧⌧ production at high-mtot
T in the b-veto category, tt̄ production in the262

b-tag category, and to a lesser extent W (! `⌫)+jets, tt̄, single top-quark, diboson and Z/�⇤(! ``)+jets263

production. These contributions are estimated using simulation. To improve the modelling, events in the264

simulation that contain jets misidentified as hadronic tau decays are weighted by fake-rates measured in265

W+ jets and tt̄ control regions in data.266

Both channels employ fake-factor techniques that use events in control regions where a selected ⌧had-vis fails267

identification or a selected lepton fails isolation. The events are weighted by transfer-factors (fake-factors)268

measured in an orthogonal control region to predict a given background contribution. The fake-factors269

are defined as the ratio of events in data which pass (Npass
data ) over those that fail (N fail

data) a specified selection270

criterion. They are measured in a control region (R) with background (Nbkg) subtracted and parameterised271

against a set of auxiliary variables (x):272

f (x) ⌘
Npass

data (x) � Npass
bkg (x)

N fail
data(x) � N fail

bkg(x)

������R
. (1)

6.1 Jet background estimate in the ⌧lep⌧had channel273

Events in the ⌧lep⌧had channel where the ⌧had-vis candidate originates from a jet are estimated using a fake-274

factor method to weight events in a control region which has the same selection as the signal region (SR),275

but where the ⌧had-vis candidate fails identification (called the CR). The method, however, must be extended276

to account for the fact that the 1-fake and 2-fake events have significantly di�erent fake-factors, which is277

mainly due to a di�erent ratio of quark- and gluon-initiated jets. The method proceeds as follows.278

The 2-fake contribution in the SR (NSR
2�fake) is obtained by weighting the estimated 2-fake contribution in279

the CR (NCR
2�fake) by the multijet tau fake-factor ( fMJ):280

NSR
2�fake(v) =

Z
fMJ(x) · NCR

2�fake(v; x) dx , (2)

where v is the variable being modelled (eg. mtot
T ) and x are the auxiliary variables from the fMJ281

parameterisation: ⌧had-vis pT, ⌧had-vis track multiplicity and the azimuthal ⌧had-vis � Emiss
T separation,282

|��(⌧had-vis, Emiss
T ) |. The fMJ is measured in the multijet Control Region (MJCR), defined in Section 6.1.1.283

The 1-fake contribution in the SR is estimated by weighting the events in the CR that remain after subtract-284

ing the 2-fake contribution (estimated using data) and the 2-real contribution (estimated using simulation)285

by the W+ jets tau fake-factor ( fW):286

NSR
1�fake(v) =

Z
fW(x) ·

f
NCR

data(v; x) � NCR
2�fake(v; x) � NCR

2�real(v; x)
g

dx . (3)

19th June 2017 – 21:53 11

‣ Two τ decay modes are considered:
✦ All hadronic final state (τhadτhad). 
✦ Semileptonic final state (τlepτhad).

ATLAS-CONF-2017-050
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A/H→ ττ̅
• Reconstruction of ττ̅ final states.
‣ Two τ decay modes are considered:

✦ All hadronic final state (τhadτhad) both τ decay hadronically. 
✦ Semileptonic final state (τlepτhad) one τ decays hadronically and one leptonically.

10

• Discriminant is total transverse mass:

‣ Missing energy challenges mττ.

‣ Backgrounds larger component in longitudinal axis.
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5.2 ⌧had⌧had channel277

Events in the ⌧had⌧had channel are recorded using single tau triggers with pT thresholds of 80, 125 or278

160 GeV, depending on the data-taking period. Events must contain at least two ⌧had-vis candidates279

with pT > 65 GeV and no electrons or muons. The leading-pT ⌧had-vis candidate must be geometrically280

matched to the object that fired the trigger and must exceed the trigger pT threshold by 5 GeV. The281

leading and sub-leading ⌧had-vis candidates must pass the “medium” and “loose” identification criteria,282

respectively. They must also have opposite electric charge and be back-to-back in the transverse plane:283

|��(⌧1, ⌧2) | > 2.7 rad.284

5.3 Event categories285

Events satisfying the selection criteria in the ⌧lep⌧had and ⌧had⌧had channels are categorised to exploit the286

di�erent production modes in the MSSM. Events containing at least one b-tagged jet enter the b-tag287

category, while events containing no b-tagged jets enter the b-veto category. The categorisation is not288

used for the Z 0 search.289

5.4 Ditau mass reconstruction290

The ditau mass reconstruction is important for achieving good separation between signal and background.291

However, its reconstruction is challenging due to the presence of neutrinos from the ⌧-lepton decays.292

Furthermore, the backgrounds tend to produce a higher mass along the longitudinal axis than in the293

transverse plane, diminishing the separation power. Therefore, the mass reconstruction used for both the294

⌧had⌧had and ⌧lep⌧had channels is the total transverse mass, defined as:295

mtot
T ⌘

q
(p⌧1

T + p⌧2
T + Emiss

T )2 � (p⌧1
T + p⌧2

T + Emiss
T )2

where p⌧1
T and p⌧2

T are the momenta of the visible tau decay products (including ⌧had and ⌧lep) projected296

into the transverse plane and Emiss
T is the missing transverse momentum.297

6 Background estimation298

The dominant background contribution in the ⌧lep⌧had channel arises from processes where the ⌧had-vis299

candidate originates from a quark- or gluon-initiated jet (henceforth called jet). This contribution is300

estimated using a data-driven fake-factor technique, described in Section 6.1. The events are divided301

into those where the selected lepton is correctly identified, predominantly from W+ jets (tt̄) production in302

the b-veto (b-tag) channel, and those where the selected lepton arises from a jet, predominantly multijet303

production. Backgrounds where both the ⌧had-vis and lepton candidates originate from electrons, muons or304

taus (real-lepton) arise from Z/�⇤ ! ⌧⌧ production in the b-veto category and tt̄ production in the b-tag305

category, with minor contributions from Z/�⇤ ! ``, diboson and single top-quark production. These306

contributions are estimated using simulation. Corrections are applied to the simulation to account for307

mismodelling of the trigger, reconstruction, identification and isolation e�ciencies, the electron to ⌧had-vis308

misidentification rate and the momentum scales and resolutions. To help constrain the normalisation309
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• Results from profile likelihood fit on transverse 
mass mTtot

• Model independent limits on σ x BR (H/A) 
production
‣ Separately for ggF production and b-associated 

production. 
‣ Limits from 200 GeV to > 2.0 TeV on mϕ

‣ Narrow-width assumption of ϕ 
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A/H→ ττ̅

12

• Results interpreted as limits on MSSM and hMSSM models

‣ For hMSSM tanβ > 1.0 for mA=0.25 TeV and tanβ > 45 for mA=1 TeV excluded.

‣ For mhmod+ tanβ > 5.3 for mA=0.25 TeV and tanβ > 54 for mA=1 TeV excluded

✦ Presence of low mass neutralinos decrease A/H→ττ branching fraction 

More details of the Z’→ ττ̅ limits in Giacomo Artoni’s talk 
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Conclusion
• ATLAS has good sensitivity to standard models extensions 

• Searches for new phenomena a involving heavy neutral scalar production 

‣ Decaying into quarks (t) and leptons (τ)

• Carried novel experimental techniques to constrain the background. 

‣ Multivariate τ identification, background suppression. 

• Model independent limits 

‣ Interpretations on MSSM limits also given.
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A/H→ ττ̅
• τ reconstruction and event selection 

‣ Hadronic τ decays: one or more charged particles, a neutrino and π0

‣ Visible decay products identification based on multivariate technique  
‣ 50% to 60% identification efficiencies measured on Z→ ττ

16

 τlepτhad τhadτhad

One τhad with pT >25 GeV 

|Δφ(ℓ, τhad)| > 2.4 rad

mT(ℓ,ETmiss)< 40 GeV 

At least two τhad with pT >65 GeV 

|Δφ(τhad, τhad)| > 2.7 rad

ATLAS-CONF-2017-050
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H/A→ ττ̅
• Hadronic tau decays: one or more charged particles, a neutrino and π0

• Visible decay products ID based on multivariate technique  

‣ Rejection of jets faking a tau lepton. 
✦ Shower shapes and track multiplicities. 

‣ 50% to 60% identification efficiencies measured on Z→ ττ

17
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Figure 1: (a) Distribution of the logarithm of the second moment in energy density of ⇡0
cand clusters that do (signal)

or do not (background) originate from ⇡0’s, as used in the ⇡0 identification. (b) 1 � e�ciency for background ⇡0
cand’s

vs. the e�ciency for signal ⇡0
cand’s to pass thresholds on the ⇡0 identification score. The ⇡0

cand’s in both figures are
associated with ⌧had�vis’s selected from simulated Z ! ⌧⌧ events.
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Figure 2: Decay mode classification e�ciency matrix showing the probability for a given generated mode to be
reconstructed as a particular mode by the Tau Particle Flow after ⇡0 reconstruction in simulated Z ! ⌧⌧ events. De-
cays containing neutral kaons are omitted. Only decays from ⌧had�vis’s that are reconstructed and pass the selection
described in Section 2.2 are considered. The statistical uncertainty is negligible.
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Figure 7: Number of ⌧had�vis candidates for each classified decay mode in the (a) Z ! ⌧⌧ and the (b) Z(! µµ)+jets
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• In τ leptonic  decays ET
miss stringent requirements
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A/H→ ττ̅

18

• Results from profile likelihood fit on transverse mass mTtot
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