Search of a high mass neutral Higgs boson in fermion final states with the ATLAS detector.

Gaetano Αθανάσιος Barone

Brandeis University

On behalf of the ATLAS collaboration

European Physical Society Meeting
Venice, July 2017
Heavy neutral Higgs bosons predicted by several Standard Model extensions, in particular

- Minimal super symmetric Standard Model (MSSM)
- Two Higgs doublet model (2HDM)
 - CP even neutral doublet \((h, H)\) and CP odd pseudo scalar \(A\) and two scalars \(H^\pm\)
 - motivated also by dark matter axion models

Present recent searches for high mass neutral Higgs boson in fermion final states with the ATLAS detector

1. \(A/H \rightarrow t\bar{t}\)
2. \(A/H \rightarrow \tau\bar{\tau}\)
$A/H \rightarrow t\bar{t}$
Decays of A/H to $t\bar{t}$ enhanced for $\tan\beta<3$ and $m_{A/H}>500$ GeV.

- Parameter region not probed by previous searches.

- Significant interference between $gg\to t\bar{t}$ production and $A/H\to t\bar{t}$
 - for $m_{A/H}$ above $t\bar{t}$ threshold, for LHC $t\bar{t}$ main production
 - Resonant shape distorted to a peak-dip structure.
A/H → tt̅

- Analysis in the lepton (ℓ) plus jets (j) final state
 - One lepton (e or μ) with $p_T(\ell) > 25$ GeV.
 - At least four anti-$k_T(4)$ jets with $p_T(j) > 25$ GeV.
 - $E_{T\text{miss}} > 20$ GeV and $E_{T\text{miss}} + m_T W > 60$ GeV.

- Considering only resolved kinematics
 - Most efficient strategy for $m_{A/H} < 800$ GeV

- Event classification into six categories
 - Kinematic χ^2 for jet association to W

- W+jets and Multijet contributions estimated from data.

- Leading uncertainties
 - Jet modelling $\sim6\%$ on B and $\sim9\%$ on S+I
 - tt̅ modelling $\sim7\%$ (m_t and pdf)
\[\mu \cdot S + \sqrt{\mu} \cdot I + B = \sqrt{\mu} \cdot (S + I) + (\mu - \sqrt{\mu}) \cdot S + B. \]

- **CL_s limits taking into account signal (S), background (B) and interference (I)**
 - \(\tan\beta < 0.7 \) for \(m_A=550 \text{ GeV} \) and \(\tan\beta < 0.72 \) for \(m_H=550 \text{ GeV} \)
- **First and strictest limits in this this parameter region**

More details in Katharina Behr's poster and Saverio D’Auria's talk

G. Barone
$A/H \rightarrow \tau\bar{\tau}$
For large $\tan\beta$ A/H couplings to leptons and down quarks enhanced.

- Increased branching fractions to τ-leptons

- Dominant production modes:
 - gluon gluon fusion for low $\tan\beta$,
 - b-associated production for high $\tan\beta$

Events are split into two categories:

- b-tag veto category: no b-jets in production.
- $N(b$-jets)$ > 0$ associated b-jet production.
A/H → ττ

T reconstruction and event selection

- Two τ decay modes are considered:
 - All hadronic final state (τ_{had}τ_{had}).
 - Semileptonic final state (τ_{lep}τ_{had}).

<table>
<thead>
<tr>
<th>τ_{lep}τ_{had}</th>
<th>τ_{had}τ_{had}</th>
</tr>
</thead>
<tbody>
<tr>
<td>One τ_{had} with (p_T > 25) GeV</td>
<td>At least two τ_{had} with (p_T > 65) GeV</td>
</tr>
<tr>
<td>(</td>
<td>\Delta \varphi(ℓ, τ_{had})</td>
</tr>
<tr>
<td>(m_T(ℓ, E_T^{miss}) < 40) GeV</td>
<td></td>
</tr>
</tbody>
</table>

Dominant backgrounds estimated from data

- Estimate rates of jets faking taus by inverting identification criteria

\[
 f(\mathbf{x}) \equiv \frac{N_{\text{pass}}^{\text{data}}(\mathbf{x}) - N_{\text{bkg}}^{\text{pass}}(\mathbf{x})}{N_{\text{fail}}^{\text{data}}(\mathbf{x}) - N_{\text{bkg}}^{\text{fail}}(\mathbf{x})}
\]

- from regions in data enhancing the Mulitjet background, tt̅ and W+jets
Reconstruction of $\tau\tau$ final states.

- Two τ decay modes are considered:
 - All hadronic final state ($\tau_{\text{had}}\tau_{\text{had}}$) both τ decay hadronically.
 - Semileptonic final state ($\tau_{\text{lep}}\tau_{\text{had}}$) one τ decays hadronically and one leptonically.

- Discriminant is total transverse mass:

$$m_T^{\text{tot}} \equiv \sqrt{(p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2 - (p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2}$$

- Missing energy challenges $m_{\tau\tau}$
- Backgrounds larger component in longitudinal axis.
● Results from profile likelihood fit on transverse mass $m_{T^{\text{tot}}}$

● Model independent limits on $\sigma \times BR (H/A)$ production
 ‣ Separately for ggF production and b-associated production.
 ‣ Limits from 200 GeV to > 2.0 TeV on m_ϕ
 ‣ Narrow-width assumption of ϕ
Results interpreted as limits on MSSM and hMSSM models

- For hMSSM $\tan\beta > 1.0$ for $m_A=0.25$ TeV and $\tan\beta > 45$ for $m_A=1$ TeV excluded.
- For $m_{h^{\text{mod+}}}$ $\tan\beta > 5.3$ for $m_A=0.25$ TeV and $\tan\beta > 54$ for $m_A=1$ TeV excluded.

Presence of low mass neutralinos decrease $A/H \rightarrow \tau\tau$ branching fraction.

More details of the $Z' \rightarrow \tau\tau$ limits in Giacomo Artoni’s talk.
Conclusions
Conclusion

• ATLAS has good sensitivity to standard models extensions

• Searches for new phenomena involving heavy neutral scalar production
 ‣ Decaying into quarks (t) and leptons (τ)

• Carried novel experimental techniques to constrain the background.
 ‣ Multivariate τ identification, background suppression.

• Model independent limits
 ‣ Interpretations on MSSM limits also given.
Additional material
T reconstruction and event selection

<table>
<thead>
<tr>
<th>$\tau_{\text{lep}}\tau_{\text{had}}$</th>
<th>$\tau_{\text{had}}\tau_{\text{had}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>One τ_{had} with $p_T > 25$ GeV</td>
<td>At least two τ_{had} with $p_T > 65$ GeV</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \varphi(\ell, \tau_{\text{had}})</td>
</tr>
<tr>
<td>$m_T(\ell, E_{T\text{miss}}) < 40$ GeV</td>
<td></td>
</tr>
</tbody>
</table>

- Hadronic τ decays: one or more charged particles, a neutrino and π^0
- Visible decay products identification based on multivariate technique
- 50% to 60% identification efficiencies measured on $Z \rightarrow \tau\tau$

![Graph showing inverse background efficiency vs. signal efficiency](image1)

![Graph showing events vs. $m_{\text{vis}}(\mu, \tau_{\text{had}})$](image2)
• Hadronic tau decays: one or more charged particles, a neutrino and π^0

• Visible decay products ID based on multivariate technique

 ‣ Rejection of jets faking a tau lepton.
 ✦ Shower shapes and track multiplicities.

 ‣ 50% to 60% identification efficiencies measured on $Z \rightarrow \tau\tau$

ATLAS Simulation
Tau Particle Flow
Diagonal fraction: 74.7%

$3h > 1\pi^0$

$3h ≥ 2\pi^0$

$3h ≥ 3\pi^0$

Reconstructed decay mode

Generated decay mode

$Z/\gamma^* \rightarrow \tau\tau$

ATLAS Simulation

$Z/\gamma^* \rightarrow \tau\tau$

Events

12000

10000

8000

6000

4000

2000

0

1 - background efficiency

0.5

0.5

1

ATLAS Preliminary

Data 2016

$Z \rightarrow \tau\tau \rightarrow \mu^+\mu^-$

Other

Stat. Unc.

$\int L dt = 7.1 \text{ fb}^{-1}$

$\sqrt{s} = 13 \text{ TeV}$

Visible Mass (τ, μ) [GeV]

0

0.5

1

40

50

60

70

80

90

100

110

120

Data exp.

1.5

2

$E_\text{Tmiss} \tau$ leptonic decays stringent requirements

G. Barone

August-17
- Results from profile likelihood fit on transverse mass m_T^{tot}