Search for New Physics through the Reconstruction of Challenging Signatures and for Long-lived particles with the ATLAS detector

Nora Pettersson (UMass) on behalf of The ATLAS Experiment

Introduction

• Many Beyond the Standard Model (BSM) theories predict atypical and unique signatures

■These events often pose challenging to reconstruct

■Detector responses to these signals are not what one would expect

• To this category belongs Long Lived Particles (LLP) of a wide range of lifetimes, particles with abnormal values of electrical charge and massive stable charged particles

• For example – an LLP decaying at a significant distance from the Interaction Point (IP) is strenuous for the tracking system

■Standard tracking algorithms assume the particle trajectories arises from the IP

Need dedicated track reconstruction methods to gain signal significance for such signatures

Disappearing Track*

Event topology: high transverse momentum (p_T) , large missing transverse energy (E_T^{miss}) , high p_T jets and a *short track*

Short track

- Assume SUSY model where χ_1^{\pm} (NLSP) is nearly mass-degenerate with χ_1^0 (LSP) Long-lived Chargino decays: $\chi_1^+ \to \chi_1^0 \pi^+$ (soft)
 - ■Common to wino LSP scenarios vital to a large portion of SUSY dark matter searches
- Disappearing track How does one reconstruct short tracks?
- Track reconstruction is done in two steps
 - ■Standard algorithms—e.g. to find mainly the primary tracks
 - ■Requiring at least seven measurements (hits) in the silicon detector layers
 - ◀A second pass of the tracking is run
 - **◄**Only using leftover measurements from the first pass
 - The hit requirement is significantly looser and aimed at short tracks: *at least four hits in the pixel layers*

2017-07-07

Disappearing Track

- Pixel tracklets effectively increase the efficiency at decay radius < 300 mm from near 0% up to 60%
 - ■Remaining inefficiency is due to LLP decaying before obtaining 4 pixel hits

- Exclusion limits are presented as a function of the LLP lifetime and mass
 - Improved sensitivity to shorter lifetimes is visible comparing previous ATLAS results to the new set limits

Track Reconstruction Efficiency

 $R_{\rm DV}$ [mm]

Displaced Vertex

- R-hadrons decaying within the ID can be reconstructed as a Displaced Vertex (DV)
 - **■**Long-lived Gluinos are present in Mini-split SUSY models
- Low track-reconstruction efficiency relying only on standard tracking
 - Strict cuts on transverse (d_0) and longitudinal (z_0) impact parameters with respect to the IP
 - ■Where as tracks from a displaced decay typical have significant large impact parameters
 - ▼Yields low track reconstruction efficiency means low vertex reconstruction efficiency for displaced decays
- A dedicated second pass of the tracking is ran on leftover hits from the standard track much like for the disappearing-track analysis but with *looser cut on* d_0 and z_0 !
 - Greatly increase the signal vertex reconstruction efficiency
 - Analysis sensitive to decay length up to 300 mm

Vertex reconstruction efficiency

Displaced Vertex

- Signal regions defined for massive displaced vertices with large track multiplicity
 - ■No SM background to the analysis
- Hadronic interactions with the material are the largest background typically large impact parameters as well
 - ◆Create a 3D map of the dense material region of the ID
 - ■Veto vertices in these regions
- Detector effects such as mis-reconstructions and combinatorics remains
 - ■Fully data-driven background estimations
- The increase in energy and luminosity have greatly improved the analysis exclusions set for R-hadrons

Material Veto:

Projection of all vertices in data vetoed by the material map in the x-y plane of the ATLAS ID

Decays within the Calorimeter

- Weakly coupled Hidden Sector (HS) may communicate with the SM via neutral LLP that decays within the ATLAS detector
 - ■Decays within the HCal give an unique signature of two atypical jets
 - **■**Decays within the calorimeter volume:
 - Produce *narrower cone* than typical SM jets originating from the IP (SM multi-jets)
 - Ratio of energy in the HCal $(E_{\rm H})$ to the energy in the ECal $(E_{\rm H})$ is large $(log_{10}(E_{\rm H}/E_{\rm EM})\ CalRatio)$
 - No associated ID tracks to the jet large ΔR_{\min} between the jet direction and the tracks

Decays within the Calorimeter

- Dedicated *CalRatio* trigger developed on the topology of neutral LLP within the HCal
 - ■Narrow jets using cone radius R=0.2 (standard is R=0.4)
 - $\triangleleft log_{10}(E_{\rm H}/E_{\rm EM}) > 1.2$
 - **◄**Small deposits are expected in the ECal
 - ◀LLP decays at the outer edge of the ECal or contribution from pile-up
 - ■Requiring that no tracks are within the jet cone

- Boosted Decision tree (BDT) is used to select signal based on kinematics of the jets
 - ■Background purely data-driven ABCD method
 - Acceptance significantly improved by relaxing of $E_{\rm T}^{\rm miss}$ and using of the BDT for high mass LLP
- Exclusion are set for few mass points of a heavy scalar boson
 - ◀<1 TeV and a wide range of decay lengths from 0.05 mm to 16 m
 </p>

CalRatio Trigger Efficiency:
High efficiency (~70%) is obtained to trigger on decays within the calorimeter volume and for obvious reasons drops significantly outside the acceptance

Conclusion

- Several interesting atypical searches have been conducted by the ATLAS Experiment all using their unique techniques and methods for reconstruction, trigger, and object selections
 - ■Three of these analyses have been reviewed focusing on the technical aspects
 - ■Searches using signatures of Disappearing Track, Displaced Vertex, Decays within the HCal, and Highly Ionising Particles
- Many more interesting signatures
 - ■Charged LLP decays to a light neutral and a heavy charged particle
 - ■Results in a kinked track opposite scenario of the disappearing track
 - ■Neutral LLP decaying to neutral stable particles and a photon
 - **◄**Gives a signature of a late photon
 - ■More generic final states with Displaced Vertices
 - **■**Different types of HIP
 - ■Stopped in the calorimeter, particle ID track, slow heavy ionising muon
 - **◄**Stopped Particles
 - ◀ Very, very, very slow particles decays in a different bunch crossing

Kinked Track:

Phys. Rev. D88 112006 (2013)

Late Photon:

Phys. Rev. D90 112005 (2014)

Displaced Vertices:

<u> Phys. Rev. D92 072004 (2015)</u>

HIP:

PLB 760 (2016) 647

Stopped Particles:

Phys. Rev. D88 112003 (2013)

BACKUP

Metastable Heavy Charge Particles

- LLP with a larger unit of charge than expected by SM particles
 - \blacktriangleleft Measured by the energy loss in the pixel subsystem dE/dx
 - Targeting models predicting R-hadrons of a wide range of lifetimes
- Additional pixel layer in after run-1: Insertable B-Layer (IBL)
 - \blacksquare Improves dE/dx measurement capability
 - ■Reduces the tail of measurement and increasing the number of tracks with valid ionisation measurement

- ◀ All pixels in a cluster are used to calculate the total charge
- And *finally the dE/dx* is measured as the charge in the cluster per unit length of the track in the sensor
 - **◄**Using all clusters associated to a track
- One or two of the highest dE/dx measurements are removed to reduce tails of the distribution

Metastable Heavy Charge Particles

Average charge released: 20000 (16000) e in pixels (IBL) and the threshold is set at 3500 (2500) e The signal Time over Threshold (ToT): is proportional to the ionisation charge With a dynamic range of 8.5 (1.5) times the average charge released by a Minimum Ionising Particle (MIP) for the pixel (IBL)

- Mass fit is performed on the energy loss measurement and the momentum of the reconstructed track
 - The fit used is a parametric Bethe-Bloch distribution
- - ■Mass fits of the pions, kaons, and protons

Metastable Heavy Charge Particles

Without ionisation requirement

With ionisation requirement

■Greatly reduce the background

- Exclusions are set on the masses for lifetimes of 10 ns or greater which are the strongest yet
- The increase in luminosity, the additional pixel layer and improved analysis techniques have yielded significant extended exclusion with respect to Run-1

