

ATLAS Higgs and Supersymmetry Physics Prospects at the High-Luminosity LHC

N. Venturi (CERN)
On behalf of the ATLAS Collaboration
EPS 2017

Outline

- The High Luminosity-LHC program
- ATLAS Phase II Upgrade program
- Higgs analysis prospect:
 - Higgs boson coupling
 - Higgs boson self-coupling
 - Higgs boson rare decays
 - VBF Higgs boson production
- Supersymmetry (SUSY) analysis prospect:
 - Stop pair direct production
 - Stau pair direct production
 - Chargino and neutralino direct production
- Conclusion

HL-LHC program

LHC / HL-LHC Plan http://hilumilhc.web.cern.ch/about/hl-lhc-project

HL-LHC mode	Peak Luminosity (cm ⁻² s ⁻¹)	Mean number of interactions per bunch-crossing <μ _{PU} >	Integrated luminosity (fb ⁻¹)
Baseline	5x10 ³⁴	140	3000
Ultimate	7.5x10 ³⁴	200	4000

ATLAS Phase II Upgrade Program (2024-2026)

- ATLAS Phase II upgrade: for performance and degradation/limitation
- -> maximize the physics performance and discovery potential of ATLAS
 - increased pile-up higher backgrounds higher trigger rates
- -> Physics targets: precision measurements /rare decays / beyond SM
- Longer latency for Trigger System
- Upgrade electronics for Tile Calorimeter
- Inner detector with fully Silicon (strip and pixel) up to |η| = 4
- New Inner Muon barrel trigger chambers
- Options for: forward muon tagger
 - timing detectors

Higgs Couplings

• Extrapolation from Run-1 analysis at $\langle \mu_{PII} \rangle = 140$ (ATL-PHYS-PUB-2014-016)

ATLAS Simulation Preliminary

$$\mu_{yy} = 1.17^{+0.28}_{-0.27}$$
($\Delta \mu / \mu \sim 0.23$)

$$\mu_{zz} = 1.46^{+0.40}_{-0.30}$$
($\Delta \mu / \mu \sim 0.24$)

$$\mu_{WW}$$
 = 1.18 ^{+0.42}_{-0.37} ($\Delta\mu/\mu$ ~ 0.33)

With 3000 fb⁻¹:

- **W, Z** couplings to 3%
- *Muon* coupling to 7%
- *t,b,t* couplings to 8-12%

Higgs Self-coupling

- First opportunity to measure Higgs boson trilinear self-coupling
- $\sigma_{NNLO}(HH) \sim 40 \text{ fb} \rightarrow \text{combine as}$ many decay channels as possible

Decay channels with b-jets have higher branching ratios

(ATL-TDR-025 LHCC-017-055)

Decay channel	Branching ratio (%)	σ.Br (fb)
b b +b b	33	12.9
b b +W ⁺ W ⁻	25	9.9
$b\overline{b}+\tau^+\tau^-$	7.4	2.9
W * W -+τ*τ	5.4	2.1
ZZ+bb	3.1	1.2
ZZ+W ⁺ W ⁻	1.2	0.48
b b +γγ	0.3	0.12
γγ+γγ	0.001	0.04

Comparable light jets rejection: with $\langle \mu \rangle = 200$ and Run-2

Higgs self-coupling

 $m_{\gamma\gamma}$ [GeV]

• HH -> bb γγ

- Cut based analysis, ATLAS upgrade design y performance
- SR: 9.5 signal, 91 total background

$$Z_0$$
: 1.05 σ (+/- 0.026 stat only)

 $-0.8 < \lambda_{HHH}/\lambda_{SM} < 7.7$ (95% C.L., no syst.)

• HH -> bb bb

- Extrapolation from Run-2 analysis
- Systematic as in 2016 (tt-bar, multi-jets bckg modeling)
- Present exclusion limit : $\mu = \sigma/\sigma_{SM} = 29$

Jet Threshold [GeV]	Background Systematics	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Lower Limit	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Upper Limit
30 GeV	Negligible	1.5	0.2	7
30 GeV	Current	5.2	-3.5	11
75 GeV	Negligible	2.0	-3.4	12
75 GeV	Current	11.5	-7.4	14

140 160

ATL-PHYS-PUB-2016-024

180

200

ttHH->WbWb bbbb ATL-PHYS-PUB-2016-023

HH-> bb τ⁻ τ⁺ ATL-PHYS-PUB-2015-046

-> BACK-UP

Higgs rare decays

- H -> J/ Ψ (-> $\mu^+\mu$) γ (with $<\mu_{PU}>=140$, L = 3000 fb⁻¹)
 - Higgs coupling to c-quark. Run-1 detector performances
 - MVA analysis $m_{\mu+\mu-\gamma}$ in [115, 135] GeV
 - 3 signal events and 1700 background (with no systematics)

BR (H -> J/
$$\Psi$$
 (-> $\mu\mu$) γ): 44⁺¹⁹₋₂₂ x 10⁻⁶ (95% C.L.)
SM: 2.9 ±0.2 x 10⁻⁶ (Run-1 Limit: 1.5 x 10⁻³)

- **H** -> $\mu^+ \mu^-$ (with $<\mu_{PU}>=200$, L = 300/3000 fb⁻¹)
- Low BR, high Z/γ^* background, high mass resolution
- Based on Run-1 analysis (cut optim.), $m_{\mu+\mu}$ in [110, 160] GeV]
- Total background shape and normalization data-driven
- ITK-Upgrade -> improve mass resolution by 25% (w.r.t Run-2

```
Z_0: 2.3σ (300 fb<sup>-1</sup>) 7.0σ (3000 fb<sup>-1</sup>) \Delta\mu/\mu: 46% (300 fb<sup>-1</sup>) 21% (3000 fb<sup>-1</sup>)
```


(ATL-TDR-025 LHCC-017-055)

VBF Higgs production

(ATL-TDR-025 LHCC-017-055)

- Pile-up suppression:
- $<\mu_{PU}>$ ~ 200 4.8 pu jets/event
- R_{PT} based on charge vertex fraction
- Applied to all non b-tagged jets with: $p_T < 100 \text{ GeV}$ and $|\eta| < 3.8$

No PU mitigation vs Pile-Up mitigation

Rejection factor 50 ~0.2 pu jets/event

• H -> WW* -> ev μν

- ATLAS performances: Run-1 (e/μ)
- Jets and E_TMiss from expected upgrade performance
- Experimental systematic (no theo. syst. on signal)

Tracking coverage	σ(H ->WW*). Expected precision
$ \eta < 4.0$	12%
$ \eta < 3.2$	18%
$ \eta < 2.7$	22%

• H -> ZZ* -> 41

- 2 jets(m(jj) > 130 GeV),
- Main background ggF (separated via BDT) and qqZZ
- Systematic only from signal QCD scale

stat+syst stat

Δμ: 0.144 | 0.170

Supersymmetry Searches at HL-LHC

- Supersymmetry (SUSY) is one possible extension of the SM:
- predicts bosonic/fermionic partner for existing fermion/bosons
- -> lightest SUSY particle is stable (if R-parity conservation) -> DM candidate
- -> Cancel out quadratic divergences in the Higgs mass corrections
- -> Can accommodate the gauge coupling unification
- Focus on HL-LHC benchmark studies:
 - 14 TeV, $\langle \mu_{PU} \rangle$ = 200, total integrated luminosity of 3000 fb⁻¹
 - smearing function for upgraded ATLAS detector simulation
 - truth level particle corrected for detector effects
 - assume 30% systematic on background

Stop pair direct production

- Cut based analysis, top decaying leptonically
- Small mass splitting among stop and neutralino
- -> ISR jets to boost the stop-system
- Final state with 2b-jets, isolated leptons and E_TMiss
- Profile-likelihood-ratio test statistics for expected exclusions
- Run-1 exclusion: [m_t, 191] U [230, 380] GeV

		3000 fp ⁻¹			
		10 10 10 10 10 10 10 10 10 10 10 10 10 1			
		Ε 2 σ			
	SR	- 10 ⁻² 3 σ			
Expected Standard Model	13.8 ± 6.5	_ - -			
$\frac{t\bar{t}}{t\bar{t}+Z}$	11.4 ± 5.1 2.4 ± 1.5	— 10 ⁻⁶			
Others	$0.0^{+1.8}_{-0.0}$	10 ⁻⁷ - 10 ⁻⁸			
$ \frac{1}{\tilde{t}_1 \tilde{t}_1 m(\tilde{t}_1, \tilde{\chi}_1^0)} = (350, 177) \text{ GeV} $ $ \tilde{t}_1 \tilde{t}_1 m(\tilde{t}_1, \tilde{\chi}_1^0) = (700, 527) \text{ GeV} $	62.7 ± 7.5	Lt, production tt, production m; - m; = 173 GeV			
$\tilde{t}_1 \tilde{t}_1 m(\tilde{t}_1, \tilde{\chi}_1^0) = (700, 527) \text{GeV}$	11.0 ± 2.0				
$\tilde{t}_1 \tilde{t}_1 m(\tilde{t}_1, \tilde{\chi}_1^0) = (700, 527) \text{GeV}$	11.0 ± 2.0	10-11			

 $\Delta M(\tilde{t}, \tilde{\chi}^0_1) = 173 \text{ GeV}$

Discovery up to 480 GeV

Exclusion up to 700 GeV

Stau pair direct production

- Extend the ATLAS exclusion scenario of combined $\tilde{\tau}_L \tilde{\tau}_L$ and $\tilde{\tau}_R \tilde{\tau}_R$ production with $\tilde{\chi}^0_1$ massless
- Cut based analysis: tau decaying hadronically, large E_T^{Miss} , low jet activity
- Main background: W+jets and tt-bar

5σ discovery sensitivity ($\tilde{\chi}^0_1$ massless):

- **100-500** GeV in $\widetilde{\tau}$ -mass for $(\widetilde{\tau}_L \widetilde{\tau}_L \text{ and } \widetilde{\tau}_R \widetilde{\tau}_R)$ combined production
- --- **120-430** GeV for pure $\tau_L \tau_L$

Exclusion limit ($\tilde{\chi}^0_1$ massless):

- ---- **700** GeV in $\widetilde{\tau}$ -mass for $(\widetilde{\tau}_L \widetilde{\tau}_L \text{ and } \widetilde{\tau}_R \widetilde{\tau}_R)$ combined production
- ---- 650 GeV for pure $\tilde{\tau}_{L}\tilde{\tau}_{L}$
- ---- 540 GeV for pure $\tilde{\tau}_R \tilde{\tau}_R$ (Run-1: 109 GeV)

For stau mass of 200 GeV: $\sigma(\widetilde{\tau}_L \widetilde{\tau}_L) \sim 0.02 \text{ pb}$ $\sigma(\widetilde{\tau}_R \widetilde{\tau}_R) \sim 0.01 \text{ pb}$

Direct chargino and neutralino production

- Extend the present ATLAS sensitivity to electro-weakinos mass range O(100 GeV)
- Simplified model:
 - $-\chi_1^{\pm}\chi_2^{0}$ are wino-like and with equal mass
 - sleptons and sneutrino with high mass, SM Higgs
- Cut based and MVA analysis
- Main background: tt-bar

5σ discovery sensitivity:

— 950 GeV in mass $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ for m($\tilde{\chi}_1^{0}$) =0

Exclusion limit:

--- 1310 GeV in mass $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ for m($\tilde{\chi}_1^{0}$) =0

Conclusions

- HL-LHC will represent a challenging environment for ATLAS:
 - -> $<\mu_{PU}>$ = 200 , large backgrounds , high radiation dose
- Higgs and SUSY physics program will benefit greatly from HL-LHC data and ATLAS Phase II Upgrade
 - -> Can explore the *HH* production mechanism
 - -> Precise measurements of Higgs couplings
 - -> Can extend the present sensitivities to heavy SUSY particles greatly
- The current expected ATLAS precisions at HL-LHC are still preliminary
 - -> Better analysis techniques, better data-driven methods for background
 - -> Theoretical uncertainties expected to decrease with time

BACK UP

Summary of Higgs results at HL-LHC

Channels	Result	HH final State	Significance Coupling limit		
VBF H->WW*	Δμ/μ = 14 to 20%	HH \rightarrow b \bar{b} $\gamma\gamma$ (stat)	$1.05~\sigma$ -0.8 < $\lambda_{HHH}/\lambda_{SM}$ < 7.7		
VBF H->ZZ*	Δμ/μ = 15 to 18%	HH \rightarrow bb $\tau^+\tau^-$ (stat+syst)	$0.6~\sigma$ -4.0 < $\lambda_{HHH}/\lambda_{SM}$ < 12.0		
ttH, H->γγ	Δμ/μ = 17 to 20%	HH -> bbbb (stat+syst)	$-3.5 < \lambda_{HHH}/\lambda_{SM} < 11.0$		
VH, H→γγ	Δμ/μ~ 25 to 35%	ttHH, HH →bbbb	0.35 σ 		
H-> Zy	Δμ/μ ~ 30%	$H \rightarrow ZZ^* \rightarrow 4I$	$\Gamma_{H} = 4.2^{+1.5}_{-2.1} \text{ MeV}$		
H->μ ⁺ μ ⁻	Δμ/μ ~ 15%	(m(4l)>220 GeV)	(stat.+syst.) Run-1: Γ _H < 22.7 MeV		
H-> J/ψ y	BR < 44 x 10 ⁻⁶ @ 9	95 % C.L.	ATL-PHYS-PUB-2015-02		

Higgs self-coupling: 3000 fb⁻¹

- $t\bar{t}HH$ ->WbWb $b\bar{b}b\bar{b}$ with $<\mu_{PU}>=200$
 - σ(ttHH) ~ 1 fb
 - Cut based analysis, Final State: HH->bbbb tt->bblvqq
 - Signal Region (≥5 b jets): 25 signal, 7100 background (dominated by c-jets mis-tagged as b-jets)

Significance: ~ 0.35 σ (no systematics) -> small contribution

- HH-> $b\bar{b} \tau^- \tau^+$ with $<\mu_{PU}> = 140$
- Different triggers/cuts for $\tau_{had}\tau_{hah}$ resp. $\tau_{had}\tau_{lep}$ channels
- Constraint on m(bb) and m($\tau\tau$)
- Systematic: 2% lumi., 3% for major bckg (Z+jets, tt-bar)
- Combined channels yields: Signal: 48 Bckg.: 7810

Significance: $\sim 0.60 \sigma$ (with syst.)

 $-4 < \lambda_{HHH}/\lambda_{SM} < 12$ (95% C.L. with syst)

ATL-PHYS-PUB-2016-023

ATL-PHYS-PUB-2015-046

 $\sigma / \sigma_{SM} \text{ as a function of } \lambda / \lambda_{SM}$

4.3 x σ(HH->bbτ⁻ τ⁺) (95% C.L.)

ATLAS HL-LHC Analysis Strategy

Two approaches to study the HL-LHC physics performance with ATLAS

Use of smearing functions:

- Study detector performances for phys. objects (e,mu,..) with full MC simulations
- Apply 'smearing functions' to truth distributions for analysis, overlay PU jets

Extrapolation of Run-1/Run-2 results

- similar detector performance and analysis approach as Run-1/Run-2
- Scale signal and background level to higher luminosity, c.o.m. energy
- Systematics (will have ~x10 more higgs at HL-LHC than at the end of Run-2)
 - Theoretical: from Run1/Run2
 - Experimental: scaled to best guess for ATLAS upgraded detector at HL-LHC

6/30/17

Pile-up II: Photons

- For combined average efficiency of 70% for isolated photons:
- Rejection factor of ~4000 for hard-scattered jets
- Rejection factor of ~14000 for pile-up jets

ATLAS Upgrade Performances

ATL-PHYS-PUB-2016-026

- For an electron identification efficiency of 69%, a jet rejection factor of about 4000 is obtained. Also, an electron charge mis-identification of about 0.26% has been evaluated for the first time
- For 70% b-jet efficiency (with MV1 tagger):
- light jet rejection of ~380 with <mu> = 200 (best optimized Run-2 b-tagger has 380 at 70% eff.)
- Muon with Pt < 200 GeV greatly benenfit from Itk momentum resolution
- $B_s^{\ 0}$ mass resolution in the $B_s^{\ 0} \to \mu + \mu -$ will improve by a factor of about 1.65 (1.5) in the barrel (end-cap) region

Pile-up suppression

- Typical jet selections require pT (jet) >30 GeV, $|\eta(\text{jet})| < 3.8$
- With $\langle \mu_{PU} \rangle$ = 200 expected 4.8 pileup jets with pT > 30 GeV, $|\eta| < 3.8$ per event
- Pile-up suppression with a parametrized track-confirmation requirement

$$R_{p_T} = rac{\sum_{ ext{tracks}} p_T}{p_T(ext{jet})}$$

• Applied to all non **b**-tagged jets with pT < 100 GeV and $|\eta| < 3.8$

Analyses typically use factor 50 rejection

- -> ~0.2 pile-up jet per event
- -> 85-70 % efficiency on hard-scatter jets

CERNLHCC-2015-020

ATLAS ITK Mass Resolution

(ATL-TDR-025 LHCC-017-055)

Figure 4.38: Signal resolution for $H \to \mu\mu$ signal events, the Run 2 resolution is compared to the HL-LHC with pile-up conditions corresponding to $\langle \mu \rangle = 200$.

ATLAS Running Conditions

High particle density

High integrated radiation dose

Detector requirements to maximize benefits from high int. luminosity:

- Replace detector not sustaining integrated radiation dose
- Minimize pile-up effect (high granularity, fast timing)
- Higher trigger acceptance and event rate
- Improve or maintain current detector performances

Higgs BSM constraints

ATL-PHYS-PUB-2014-016 ATL-PHYS-PUB-2014-017

300, 3000 fb⁻¹ $<\mu_{PU}>=140$

Figure 4: Regions of the $(\cos(\beta-\alpha), \tan\beta)$ plane of four types of 2HDMs expected to be excluded by fits to the measured rates of Higgs boson production and decays. The confidence intervals account for a possible relative sign between different couplings. The expected likelihood contours where $-2 \ln \Lambda = 6.0$, corresponding approximately to 95% CL (2σ) , are indicated assuming the SM Higgs sector. The light shaded and hashed regions indicate the expected exclusions.

6/30/17

Analysis Techniques

ATLAS HL-LHC studies have to consider:

- upgraded ATLAS detector + trigger systems
- collision energy, $\sqrt{s} = 14 \text{ TeV}$
- high pile-up, $\langle \mu_{PU} \rangle$, of 140 or 200
- We use generator-level $\sqrt{s} = 14 \text{ TeV}$ Monte Carlo samples
- Overlay with jets from dedicated *pile-up library*
 - ⇒ pile-up library contains fully simulated pile-up jets with $\langle \mu_{PU} \rangle = 140$ or 200
- Reconstruct electron, muons, jets, photons and missing-E_T from generator+overlay information
- To simulate the response of the detector:
 - \rightarrow smear p_T and energy of reconstructed physics objects using smearing functions
 - apply reconstruction efficiencies for electrons, muons and jets
- To emulate triggers: apply trigger efficiency functions
- Smearing and efficiency functions determined from fully-simulated samples using ATLAS HL-LHC detector and high pile-up
 - \rightarrow Functions are dependent on p_T and η
- Most analysis presented use single lepton or di-lepton triggers (e, μ)
 - ightharpoonup di-au triggers and 4-jet triggers used for particular analyses
- Parametrised b-tagging (based on ATLAS Run 1 MV1 tagger) is performed on reconstructed jets
- This approach to ATLAS HL-LHC prospects studies has been validated on a limited number of physics studies comparing full simulation and the generator-level+smearing technique

Higgs Width at HL-LHC

Measure off-shell production of $H \rightarrow ZZ^* \rightarrow 4\ell$ with $m(4\ell) > 220$ GeV

Use $m(4\ell)$ shape and matrix element to discriminate between signal and background

- \rightarrow stat. uncertainties only: $\mu_{\text{off-shell}}=1.00^{+0.23}_{-0.27}$
- \rightarrow stat.+syst. uncertainties: $\mu_{\text{off-shell}}=1.00^{+0.43}_{-0.50}$
- \bullet Off-shell production used to constrain the Higgs boson width Γ_H
- For $\Gamma = \Gamma_{SM}$ combining with on-shell measurement, (assuming off-shell measurement dominates):

$$\Gamma_{H}$$
= 4.2^{+1.5}_{-2.1} MeV (stat+sys)

• Run 1 limit: $\Gamma_{\rm H}$ < 22.7 MeV at 95% CL (*WW*, **ZZ**)

Higgs coupling K-Framework

ATL-PHYS-PUB-2014-016

- \bullet Assuming $\Gamma_{\rm H}$ is sum of SM widths, calculate uncertainties on Higgs boson couplings.
- Deviations from the SM are quantified using κ multiplier, in SM $\kappa_i = 1$, e.g.: $(\sigma \cdot \text{BR})(gg \to H \to \gamma \gamma) = \sigma_{\text{SM}}(gg \to H) \cdot \text{BR}_{\text{SM}}(H \to \gamma \gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$ **ATLAS** Simulation Proliminary

ATLAS Simulation Preliminary

vs = 14 TeV: [Ldt=300 fb⁻¹; [Ldt=3000 fb⁻¹]

 Assume universal modifications to Higgs couplings to fermions (κ_F) and vector bosons (**k**_V)

ATLAS HL-LHC Analysis Strategy

- Detector performance of different physics objects (e, μ , γ ,...) with MC (Full Sim.)
- Parametrization to provide 'smeared truth' simulation to benchmark analysis
- Jets from pile-up events are overlaid on the hard-scatter events
- Signals from interactions in previous bunch crossings are added (calorimeter response)

Extrapolation of Run-1/Run-2 results

- similar detector performance and analysis approach as Run-1/Run-2
- Scale signal and background level to higher luminosity, c.o.m. energy

Detector system	Trigger-DAQ		Inner Tracker	Inner Tracker + Muon Spectrometer	Inner Tracker + Calorimeter		
Object Performance Physics Process		ency/ sholds e [±]	b-tagging	μ [±] Identification/ Resolution	Pile-up rejection	Jets	$E_{ m T}^{ m miss}$
$H \longrightarrow 4\mu$ VBF $H \to ZZ^{(*)} \to \ell\ell\ell\ell$ VBF $H \to WW^{(*)} \to \ell\nu\ell\nu$	1	1	,	<i>y y y</i>	<i>'</i> ,	<i>y y</i>	/
SM VBS ssWW	✓	✓		/	/	/	/
SUSY, $\chi_1^{\pm}\chi_2^o \rightarrow \ell b \bar{b} + X$ BSM $HH \rightarrow b \bar{b} b \bar{b}$	✓	✓	1	✓	✓	1	✓

- Systematics (will have ~x10 more higgs at HL-LHC than at the end of Run-2)
 - Theoretical: from Run1/Run2
 - Experimental: scaled to best guess for ATLAS upgraded detector at HL-LHC
- Pile-up suppression (~factor 50) track-confirmation requirement (~0.2 p.u. jets/event)

Higgs Couplings

ATLAS Simulation Preliminary

$$\sqrt{s}$$
 = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$ **Run-1**

- $\mu = 1.17^{+0.28}_{-0.27}$ ($\Delta \mu / \mu \sim 0.23$)
- $\mu = 1.46^{+0.40}_{-0.30}$ ($\Delta\mu/\mu \sim 0.24$)
- μ = 1.18 ^{+0.42}_{-0.37} ($\Delta\mu/\mu$ ~ 0.33)

- Extrapolation from
- •Run-1 analysis at $\langle \mu_{PU} \rangle = 140$
- •(ATL-PHYS-PUB-2014-016)

With 3000 fb⁻¹:

- *W, Z* couplings to 3%
- •Muon coupling to 7%
- •*t*,*b*,*τ* couplings to 8-12%