COSINUS - Cryogenic Dark Matter searches with NaI crystals

Jochen Schieck
Institute of High Energy Physics (HEPHY) of the Austrian Academy of Sciences and
Institute of Atomic and Subatomic Physics, TU Wien

for the COSINUS collaboration

www.cosinus.it
Search for Dark Matter

- clear evidence for dark matter on different scales
- observation of dark matter based on gravitational pull only
- undiscovered new particles as a well motivated candidate to explain dark matter
- **direct detection**: search for dark matter via elastic scattering of relic dark matter in the detector
Dark Matter searches by Annual Modulation

- small interaction rate of dark matter expected

- excellent knowledge of background required to identify dark matter signal

- movement of earth in dark matter wind leads to **annual modulation** of dark matter signal

- size of modulation amplitude ~10% (threshold dependent)
 (http://arxiv.org/abs/1209.3339)
Annual Modulation of Dark Matter Interaction Rate

- DAMA/LIBRA experiment searches for dark matter via annual modulation of signal rate
- operation of radiopure NaI(Tl)-crystals and detection of scintillation light from dark matter scattering
- residual signal shows clear sign for an annual modulation of interaction rate in the energy region of 2-6 keVee

![Graph showing residuals over time with 9.3σ significance](image)
Interpretation of Annual Modulation as Dark Matter

- interpretation of annual modulation as dark matter scattering
 \[\text{arXiv:0808.3607} \]

- standard astrophysical assumptions for WIMP density and velocity

- preferred mass and cross-section area excluded by other dark matter experiments

\[m_X \approx 50 \text{ GeV} ; \sigma_{Xn} \approx 7 \cdot 10^{-6} \text{ pb} \]
\[m_X \approx 6-10 \text{ GeV} ; \sigma_{Xn} \approx 10^{-3} \text{ pb} \]
Annual Modulation - what do we know?

- statistically significant observation of annual modulated rate of events observed through NaI(Tl) scintillation light

- **origin of underlying process is unknown**

- observation is **consistent** with expectation from **dark matter** scattering modulated by annual changes of dark matter relative velocity

- detailed systematic studies cannot explain annual fluctuation by background processes

- **assumptions**: quenched scintillation light, together with standard astrophysical assumption could explain signal modulation via dark matter-nucleus scattering
Measurement of Recoil Energy - Signal Quenching

- amount of scintillation light produced depends on underlying scattering process ("quenching")
- origin of scattering process unknown and size of total deposited energy undetermined
- origin of annual modulation hindered

→ measurement of total energy independent from scattering process
Detection of Dark Matter Scattering

- better understanding of underlying scattering process by scintillation light independent energy measurement
- measurement of energy via phonon / heat channel

Nal based experiments

- DAMA/LIBRA (NaI)
- ANAIS (NaI)
- SABRE (NaI)
- COSINE (NaI)
- KIMS (CsI)
- CRESST-II/III (CaWO₄)
- COSINUS (NaI)
- (Super)CDMS (Ge, Si)
- EDELWEISS (Ge)
- CDEX (Ge)
- CoGeNT (Ge)
- DAMIC (Si)
- Xenon (10-100 kton)
- LUX (LZ) (Xe)
- PandaX (Xe)
- DarkSide (Ar)
The Cosinus Collaboration

about 20 scientists from seven institutions from Germany, Italy and Austria:

i. Max-Planck-Institut für Physik- D-80805 München - Germany
ii. INFN - Sezione di Milano-Bicocca, I-20125 Milano - Italy
iii. Dipartimento di Fisica, Universita di Milano-Bicocca, I-20126 Milano - Italy
iv. Institut fur Hochenergiephysik, Österreichische Akademie der Wissenschaften, A-1050 Wien - Austria
v. Atominstitut, Technische Universität Wien, A-1020 Wien - Austria
vi. INFN - Laboratori Nazionale del Gran Sasso, I-67010 Assergi (AQ) - Italy
vii. Gran Sasso Science Institute, I-67100 L'Aquilla - Italy
The COSINUS Experiment - Detection Principle

- cryogenic operation of NaI-crystal
- simultaneous read-out of
 - phonon channel: particle independent measurement of deposited energy (= nuclear recoil energy)
 - (scintillation) light: different response for signal and background events for background rejection ("quenching")

→ separation between nuclear scattering and β/γ background events
COSINUS - Expected Performance

Black: β/γ-background

- flat 1 c/(keV kg day)
- 40K: 600 μBq/kg

Red: $10 \text{ GeV}/c^2$ WIMP with 2×10^{-4} pb (Savage et al.)

Light yield = Light signal / Phonon signal

COSINUS - Expected Performance

- Threshold of 1 keV nuclear recoil
- 4% of deposited energy measured as scintillation light

Simulation of WIMP-events
(100 kg d before cuts)

<table>
<thead>
<tr>
<th>Energy</th>
<th># Events</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 keV</td>
<td>1078</td>
<td>45 %</td>
</tr>
<tr>
<td>2-6 keV</td>
<td>1262</td>
<td>53 %</td>
</tr>
<tr>
<td>> 6 keV</td>
<td>46</td>
<td>2 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2386</td>
<td>100 %</td>
</tr>
</tbody>
</table>
The COSINUS Experiment - Challenges

- NaI is hygroscopic → requires careful handling in glove box
- High contamination with 40K emission of ~3 keV Auger electron possible
- Small signal amplitude

$$
\Delta T \propto \frac{\Delta Q}{c \cdot m}
$$

$$
c \propto \left(\frac{T}{\Theta_D}\right)^3
$$

c: specific heat capacity of the crystal

Θ_D: Debye temperature
First NaI-Prototype and Mounting in Cryostat

Construction and operation of first detector module for cryogenic operation

- NaI phonon detector (undoped)
- Light detector (Silicon on Sapphire + TES)
- CdWO₄ carrier crystal
- Copper housing
- 5 cm of Pb to shield radioactivity from the dilution unit of the cryostat
- Decoupling system to reduce microphonic noise

30x30x20 mm³ (66g)
NaI-crystal - Prototype Performance

→ first successful measurement of NaI crystal as cryogenic detector

hits of the CdWO₄ carrier
Nal-crystal - Prototype Performance

- energy threshold: 10 keV
- 3.7% of energy from γ/β-events deposited in detector is measured as scintillation light

exposure after cuts: 0.46 kg d

→ improvement of detector performance needed
Future Plans

- optimisation of performance
 - improve light yield and lower threshold
- measurement of quenching factors
- new prototypes with improved light yield
 - proof of particle discrimination using neutrons

beaker shape light detector of high purity silicon → improved light detection

about 10 kg d needed to clarify if events originate from nuclear recoils
Summary and Conclusion

- DAMA/LIBRA experiment observes annual modulation of rate based on scintillation measurements from NaI(Tl)

- simultaneous measurement of phonon energy (= total energy) provides additional information on scattering process including γ/β-background rejection

- COSINUS is an R&D project aiming for cryogenic operation of NaI-crystals and measurement of total energy

- COSINUS achieved first successful measurement of NaI-crystal as a cryogenic calorimeter
Additional Material
Typically high contamination with 40K

19K 40 (1.248 $\cdot 10^9$ a)

- γ: 0.043 MeV, 10.66%
- 1.505 MeV, 0.2%
- β^-: 1.311 MeV, 89.14%

18Ar 40 (stable)

- 1.504 MeV, 10.66%
- 1.461 keV, 10.66%
- 1.022 MeV

20Ca 40 (stable)

- 0.483 MeV, 0.001%

3 keV Auger electron emitted together with the 1.46 MeV gamma quantum