COSINUS -Cryogenic Dark Matter searches with Nal crystals

Jochen Schieck Institute of High Energy Physics (HEPHY) of the Austrian Academy of Sciences and

Institute of Atomic and Subatomic Physics, TU Wien

for the COSINUS collaboration

Search for Dark Matter

- clear evidence for dark matter on different scales
- observation of dark matter based on gravitational pull only
- undiscovered new particles as a well motivated candidate to explain dark matter
- direct detection: search for dark matter via elastic scattering of relic dark matter in the detector

http://cdms.berkeley.edu/Education/DMpages/science/directDetection.shtml

Dark Matter searches by Annual Modulation

- small interaction rate of dark matter expected
- excellent knowledge of background required to identify dark matter signal
- movement of earth in dark matter wind leads to annual modulation of dark matter signal
 - size of modulation amplitude
 ~10% (threshold dependent)

(http://arxiv.org/abs/1209.3339)

Annual Modulation of Dark Matter Interaction Rate

- DAMA/LIBRA experiment searches for dark matter via annual modulation of signal rate
- operation of radiopure Nal(Tl)-crystals and detection of scintillation light from dark matter scattering

 residual signal shows clear sign for an annual modulation of interaction rate in the energy region of 2-6 keVee

Interpretation of Annual Modulation as Dark Matter

 $m_X \approx 50 \text{ GeV}$; $\sigma_{Xn} \approx 7 \cdot 10^{-6} \text{ pb}$ $m_X \approx 6 \cdot 10 \text{ GeV}$; $\sigma_{Xn} \approx 10^{-3} \text{ pb}$

- interpretation of annual modulation as dark matter scattering arXiv:0808.3607
- standard astrophysical assumptions for WIMP density and velocity
- preferred mass and cross-section area excluded by other dark matter experiments

Annual Modulation - what do we know?

- statistically significant observation of annual modulated rate of events observed through NaI(TI) scintillation light
 - · origin of underlying process is unknown
- observation is consistent with expectation from dark matter
 scattering modulated by annual changes of dark matter relative velocity
- detailed systematic studies cannot explain annual fluctuation by background processes
- assumptions: quenched scintillation light, together with standard astrophysical assumption could explain signal modulation via dark matter-nucleus scattering

Measurement of Recoil Energy - Signal Quenching

- amount of scintillation light produced depends on underlying scattering process ("quenching")
- origin of scattering process unknown and size of total deposited energy undetermined

 origin of annual modulation hindered

→measurement of total energy independent from scattering process

Detection of Dark Matter Scattering

- better
 understanding of
 underlying
 scattering process
 by scintillation
 light independent
 energy
 measurement
- measurement of energy via phonon / heat channel

about 20 scientists from seven institutions from Germany, Italy and Austria:

- i. Max-Planck-Institut für Physik- D-80805 München Germany
- ii. INFN Sezione di Milano-Bicocca, I-20125 Milano Italy
- iii. Dipartimento di Fisica, Universita di Milano-Bicocca, I-20126 Milano Italy
- iv. Institut fur Hochenergiephysik, Österreichische Akademie der Wissenschaften, A-1050 Wien Austria
- v. Atominstitut, Technische Universität Wien, A-1020 Wien Austria
- vi. INFN Laboratori Nazionale del Gran Sasso, I-67010 Assergi (AQ) Italy
- vii. Gran Sasso Science Institute, I-67100 L'Aquilla Italy

The COSINUS Experiment - Detection Principle

→separation between nuclear scattering and β/γ background events

- cryogenic operation of Nal-crystal
- simultaneous read-out of
 - phonon channel:

 particle independent
 measurement of
 deposited energy

 (= nuclear recoil energy)
 - (scintillation) light:
 different response for
 signal and background
 events for background
 rejection ("quenching")

COSINUS - Expected Performance

Light yield = Light signal / Phonon signal

COSINUS - Expected Performance

Simulation of WIMP-events (100 kg d before cuts)

Energy # Events		Fraction	
1-2 keV	1078	45 %	
2-6 keV	1262	53 %	
> 6 keV	46	2 %	
TOTAL	2386	100 %	

threshold of 1 keV nuclear recoil

4% of deposited energy measured as scintillation light

The COSINUS Experiment - Challenges

- Nal is hygroscopic
 - → requires careful handling in glove box
- high contamination with ⁴⁰K emission of ~3 keV Auger electron possible

small signal amplitude

$$\Delta T \propto \frac{\Delta \, Q}{c \cdot m}$$

 $c \propto (T/\Theta_D)^3$

c: specific heat capacity of the crystal

Θ_D:Debye temperature

Properties	Nal(pure)	Csl(pure)	$CdWO_4$	$CaWO_4$
Density [g/cm ³]	3.67	4.51	7.9	6.12
Melting point [°C]	661	894	1598	1650
Structure	CsCl	CsCl	Wolframite	Scheelite
λ_{max} at 300 K [nm]	\sim 300	\sim 315	\sim 475	420-425
Hygroscopic	yes	slightly	no	no
Θ_D [K]	169	125	-	335
Photons per keV at 3.4 K	19.5 \pm 1.0	58.9±5.6		_
Mean energy of emitted photon [eV]	3.3	3.9	-	3.14

First Nal-Prototype and Mounting in Cryostat

Construction and operation of first detector module for cryogenic operation

Nal-crystal - Prototype Performance

Nal-crystal - Prototype Performance

- energy threshold: 10 keV
- 3.7% of energy from γ/β-events deposited in detector is measured as scintillation light

→improvement of detector performance needed

Future Plans

- optimisation of performance
 - improve light yield and lower threshold
- measurement of quenching factors
- new prototypes with improved light yield

about 10 kg d needed to clarify if events originate from nuclear recoils

Summary and Conclusion

- DAMA/LIBRA experiment observes annual modulation of rate based on scintillation measurements from Nal(Tl)
- simultaneous measurement of phonon energy (= total energy) provides additional information on scattering process including γ/β-background rejection
- COSINUS is an R&D project aiming for cryogenic operation of Nal-crystals and measurement of total energy
- COSINUS achieved first successful measurement of Nalcrystal as a cryogenic calorimeter

Additional Material

arXiv:0804.2741

Typically high contamination with ⁴⁰K

3 keV Auger electron emitted together with the 1.46 MeV gamma quantum