Recent results from the SND detector V. Druzhinin BINP, Novosibirsk, Novosibirsk State University on behalf of the SND collaboration EPS HEP2017, Venice, Italy, 5-12 July 2017 ### SND detector 1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 - NaI(Tl) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids. SND collected data at the VEPP-2M (1996-2000) and VEPP-2000 (2010-2013,2016-...) Main physics task of SND is study of all possible processes of e⁺e⁻ annihilation into hadrons below 2 GeV. - ✓ The total hadronic cross section, which is calculated as a sum of exclusive cross sections. - ✓ Study of hadronization (dynamics of exclusive processes). - Properties of excited vector mesons of the ρ , ω , ϕ families - Development of MC event generator for e⁺e⁻ → hadrons below 2 GeV. ## VEPP-2000 e⁺e⁻ collider #### **VEPP-2000 parameters**: - c.m. energy E=0.3-2.0 GeV - circumference 24.4 m - round beam optics - Luminosity at E=1.8 $\Gamma \ni B$ 1×10³² cm⁻² sec⁻¹ (project) 4×10³¹ cm⁻² sec⁻¹ (achieved) During 2010-2013 the luminosity was limited by the deficit of positrons ✓x10 more intense positron source converter - ✓ Experiments at upgraded VEPP-2000 was restarted by the end of 2016. - ✓ About **50pb**-1 of integrated luminosity has been already collected during the 2017 run ### **SND** data #### VEPP-2M | | Below ϕ | Near ϕ | Above φ | |-----------------------|--------------|-------------|-----------| | IL, pb ⁻¹ | 9.1 | 13.2 | 8.8 | | E _{cm} , GeV | 0.36-0.97 | 0.98-1.06 | 1.06-1.38 | ~15 hadronic processes are currently under analysis **VEPP-2000** | | Below ϕ | Near ϕ | Above φ | |-----------------------|--------------|-------------|-----------| | IL, pb ⁻¹ | 15.4 | 6.9 | 100.0 | | E _{cm} , GeV | 0.30-0.97 | 0.98-1.05 | 1.05-2.00 | ### Precision measurements: $$ightharpoonup$$ e⁺e⁻ $\rightarrow \pi^0 \gamma$ (VEPP-2M data) $$\rightarrow$$ e⁺e⁻ \rightarrow K⁺K⁻ ### First measurements $$ightharpoonup e^+e^- ightarrow \pi^+\pi^-\pi^0\eta$$ $$\triangleright$$ e⁺e⁻ $\rightarrow \omega \pi^0 \eta$ # $e^+e^- \rightarrow \pi^0 \gamma$ (VEPP-2M data) - \Box Third largest cross section (after 2π and 3π) below 1 GeV - \square Measurement of the $\pi^0 \gamma^* \gamma$ transition form factor - \square Measurement of the radiative decays $V \rightarrow \pi^0 \gamma$, $V = \rho$, ω , ϕ ... - ☐ There is a tension between the KLOE measurement of the ratio $\Gamma(\omega \to \pi^0 \gamma) / \Gamma(\omega \to \pi^+ \pi^- \pi^0)$ and other measurements of ω -meson parameters. KLOE studies the $e^+e^-\rightarrow \omega\pi^0$ process near the ϕ -meson resonance in two ω decay modes. The KLOE measurement led to a large shifts of the previously measured ω -meson parameters, especially for $\omega \rightarrow \pi^0 \gamma$. # Analysis features - □ The process e⁺e⁻ $\rightarrow \gamma \gamma$ is used for normalization. Many selection criteria are common for 2 γ and 3 γ . - trigger, absence of charged tracks, cuts on the total energy deposition and event momentum, muon system veto. - □ Final selection is based on 4C kinematic fit ($\chi^2_{3\gamma}$ < 30, 36° < θ_{γ} < 144°, 80 < M_{rec} < 190 MeV, where M_{rec} is the mass recoiling against largest energy photon). - □ The number of e⁺e⁻→ $\pi^0\gamma$ events is determined from the fit to the M_{rec} spectrum V.Druzhinin EPS HEP 2017 # Phys. Rev. D 93, 092001 (2016) ## Born cross section E (MeV) E (MeV) # Results on radiative decays - $B(\omega \to \pi^0 \gamma) B(\omega \to e^+ e^-) = (6.336 \pm 0.056 \pm 0.089) \times 10^{-6}$ Using PDG value for $B(\omega \to \pi^+ \pi^- \pi^0) B(\omega \to e^+ e^-)$ we obtain $\Gamma(\omega \to \pi^0 \gamma) / \Gamma(\omega \to \pi^+ \pi^- \pi^0) = 0.0992 \pm 0.0023$, which is higher than the KLOE value 0.0897 ± 0.0016 by 3.4σ - By 1.8 σ lower than the current PDG value $(6.0\pm0.8)\times10^{-4}$, but agrees with the branching fraction for the charged mode B($\rho^\pm\to\pi^\pm\gamma$) = $(4.5\pm0.5)\times10^{-4}$ - $B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (3.92^{+0.71}_{-0.40} \pm 0.51) \times 10^{-7}$ The model uncertainties of the previous measurements (~8%) were underestimated. For ϕ_ϕ fixed at the value (163±7)° obtained in the VMD fit to $e^+ e^- \to \pi^+ \pi^- \pi^0$ data $$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (4.04 \pm 0.09 \pm 0.19) \times 10^{-7}$$ # $e^+e^-\rightarrow K^+K^-$ Our measurement agrees with the BABAR data and has comparable or better accuracy. Phys. Rev. D 94, 112006 (2016) ### (BABAR data)/(SND fit) ratio The green and yellow bands represent the BABAR and SND systematic uncertainties ### Exclusive vs inclusive measurements DHMZ, TAU 2016, arXiv:1612.02743 $$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$ - ☐ At E < 2 GeV the total cross section is calculated as a sum of exclusive channels. - ☐ The exclusive data are incomplete in the region 1.6<E<2.0 GeV. - There is no experimental information on the final states $\pi^+\pi^-\pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\eta$...) - ☐ The important experimental task is to measure all significant exclusive channels below 2 GeV, and perform comparison with inclusive measurements and pQCD prediction. # $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ - $ightharpoonup \omega\eta$ and $\phi\eta$ intermediate states are clearly seen in the spectrum of the mass recoiling against η - $ightharpoonup a_0$ (980) ρ intermediate state is seen in the $\eta \pi$ spectrum - ➤ Some fraction of events at E below 1.8 GeV do not have any clear structure. # $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta)$, nb - \Box The process e⁺e⁻ \rightarrow ωη has been measured separately. - ☐ There is a significant difference between our result and the previous BABAR measurement. - **×** First measurement of this process - **x** The intermediate states are $\omega \eta$, $\phi \eta$, $\alpha_0 \rho$ and structureless $\pi^+ \pi^- \pi^0 \eta$ - **x** The known $\omega\eta$ and $\phi\eta$ contributions explain about 50-60% of the cross section below 1.8 GeV. - **\times** Above 1.8 GeV the dominant reaction mechanism is $\alpha_0 \rho$ $\sigma(e^+e^- \rightarrow \omega \eta)$, nb # $e^+e^- \rightarrow \omega \pi^0 \eta$ @ SND Phys. Rev. D 94,032010 (2016) - First measurement of the $e^+e^- \rightarrow \omega \pi^0 \eta$ cross section. - The dominant mechanism is $\omega a_0(980)$. - ■The cross section is about 2.5 nb, 5% of the total hadronic cross section # Summary - ✓ The SND detector accumulated ~120 pb⁻¹ of integrated luminosity at the VEPP-2000 e⁺e⁻ collider in the c.m. energy range 0.3 2 GeV. - ✓ Data analysis on hadron production is in progress. The obtained results have comparable or better accuracy than previous measurements ($\omega \pi^0$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\eta$, n anti-n, $\pi^0\gamma$, K^+K^-) - ✓ For several processes the cross sections have been measured for the first time (ηγ, $\pi^+\pi^-\pi^0\eta$, $\omega\pi^0\eta$) - ✓ After VEPP-2000 upgrade, data taking was resumed, with a goal of ~1 fb⁻¹ of integrated luminosity.