Recent results from the SND detector

V. Druzhinin

BINP, Novosibirsk, Novosibirsk State University

on behalf of the SND collaboration

EPS HEP2017, Venice, Italy, 5-12 July 2017

SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 - NaI(Tl) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids.

SND collected data at the VEPP-2M (1996-2000) and VEPP-2000 (2010-2013,2016-...)

Main physics task of SND is study of all possible processes of e⁺e⁻ annihilation into hadrons below 2 GeV.

- ✓ The total hadronic cross section, which is calculated as a sum of exclusive cross sections.
- ✓ Study of hadronization (dynamics of exclusive processes).
 - Properties of excited vector mesons of the ρ , ω , ϕ families
 - Development of MC event generator for e⁺e⁻ → hadrons below 2 GeV.

VEPP-2000 e⁺e⁻ collider

VEPP-2000 parameters:

- c.m. energy E=0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity at E=1.8 $\Gamma \ni B$ 1×10³² cm⁻² sec⁻¹ (project) 4×10³¹ cm⁻² sec⁻¹ (achieved)

During 2010-2013 the luminosity was limited by the deficit of positrons

✓x10 more intense positron source

converter

- ✓ Experiments at upgraded VEPP-2000 was restarted by the end of 2016.
- ✓ About **50pb**-1 of integrated luminosity has been already collected during the 2017 run

SND data

VEPP-2M

	Below ϕ	Near ϕ	Above φ
IL, pb ⁻¹	9.1	13.2	8.8
E _{cm} , GeV	0.36-0.97	0.98-1.06	1.06-1.38

~15 hadronic processes are currently under analysis

VEPP-2000

	Below ϕ	Near ϕ	Above φ
IL, pb ⁻¹	15.4	6.9	100.0
E _{cm} , GeV	0.30-0.97	0.98-1.05	1.05-2.00

Precision measurements:

$$ightharpoonup$$
 e⁺e⁻ $\rightarrow \pi^0 \gamma$ (VEPP-2M data)

$$\rightarrow$$
 e⁺e⁻ \rightarrow K⁺K⁻

First measurements

$$ightharpoonup e^+e^-
ightarrow \pi^+\pi^-\pi^0\eta$$

$$\triangleright$$
 e⁺e⁻ $\rightarrow \omega \pi^0 \eta$

$e^+e^- \rightarrow \pi^0 \gamma$ (VEPP-2M data)

- \Box Third largest cross section (after 2π and 3π) below 1 GeV
- \square Measurement of the $\pi^0 \gamma^* \gamma$ transition form factor
- \square Measurement of the radiative decays $V \rightarrow \pi^0 \gamma$, $V = \rho$, ω , ϕ ...
- ☐ There is a tension between the KLOE measurement of the ratio

 $\Gamma(\omega \to \pi^0 \gamma) / \Gamma(\omega \to \pi^+ \pi^- \pi^0)$ and other measurements of ω -meson

parameters.

KLOE studies the $e^+e^-\rightarrow \omega\pi^0$ process near the ϕ -meson resonance in two ω decay modes.

The KLOE measurement led to a large shifts of the previously measured ω -meson parameters, especially for $\omega \rightarrow \pi^0 \gamma$.

Analysis features

- □ The process e⁺e⁻ $\rightarrow \gamma \gamma$ is used for normalization. Many selection criteria are common for 2 γ and 3 γ .
 - trigger, absence of charged tracks, cuts on the total energy deposition and event momentum, muon system veto.
- □ Final selection is based on 4C kinematic fit ($\chi^2_{3\gamma}$ < 30, 36° < θ_{γ} < 144°, 80 < M_{rec} < 190 MeV, where M_{rec} is the mass recoiling against largest energy photon).
- □ The number of e⁺e⁻→ $\pi^0\gamma$ events is determined from the fit to the M_{rec} spectrum

V.Druzhinin EPS HEP 2017

Phys. Rev. D 93, 092001 (2016)

Born cross section

E (MeV)

E (MeV)

Results on radiative decays

- $B(\omega \to \pi^0 \gamma) B(\omega \to e^+ e^-) = (6.336 \pm 0.056 \pm 0.089) \times 10^{-6}$ Using PDG value for $B(\omega \to \pi^+ \pi^- \pi^0) B(\omega \to e^+ e^-)$ we obtain $\Gamma(\omega \to \pi^0 \gamma) / \Gamma(\omega \to \pi^+ \pi^- \pi^0) = 0.0992 \pm 0.0023$, which is higher than the KLOE value 0.0897 ± 0.0016 by 3.4σ
- By 1.8 σ lower than the current PDG value $(6.0\pm0.8)\times10^{-4}$, but agrees with the branching fraction for the charged mode B($\rho^\pm\to\pi^\pm\gamma$) = $(4.5\pm0.5)\times10^{-4}$
- $B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (3.92^{+0.71}_{-0.40} \pm 0.51) \times 10^{-7}$ The model uncertainties of the previous measurements (~8%) were underestimated. For ϕ_ϕ fixed at the value (163±7)° obtained in the VMD fit to $e^+ e^- \to \pi^+ \pi^- \pi^0$ data

$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (4.04 \pm 0.09 \pm 0.19) \times 10^{-7}$$

$e^+e^-\rightarrow K^+K^-$

Our measurement agrees with the BABAR data and has comparable or better accuracy.

Phys. Rev. D 94, 112006 (2016)

(BABAR data)/(SND fit) ratio

The green and yellow bands represent the BABAR and SND systematic uncertainties

Exclusive vs inclusive measurements

DHMZ, TAU 2016, arXiv:1612.02743

$$R(s) = \frac{\sigma(e^+e^- \to \gamma^* \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- ☐ At E < 2 GeV the total cross section is calculated as a sum of exclusive channels.
- ☐ The exclusive data are incomplete in the region 1.6<E<2.0 GeV.
- There is no experimental information on the final states $\pi^+\pi^-\pi^0\eta$, $\pi^+\pi^-\eta\eta$, $\pi^+\pi^-\pi^0\pi^0\eta$...)
- ☐ The important experimental task is to measure all significant exclusive channels below 2 GeV, and perform comparison with inclusive measurements and pQCD prediction.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

- $ightharpoonup \omega\eta$ and $\phi\eta$ intermediate states are clearly seen in the spectrum of the mass recoiling against η
- $ightharpoonup a_0$ (980) ρ intermediate state is seen in the $\eta \pi$ spectrum
- ➤ Some fraction of events at E below 1.8 GeV do not have any clear structure.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta)$, nb

- \Box The process e⁺e⁻ \rightarrow ωη has been measured separately.
- ☐ There is a significant difference between our result and the previous BABAR measurement.

- **×** First measurement of this process
- **x** The intermediate states are $\omega \eta$, $\phi \eta$, $\alpha_0 \rho$ and structureless $\pi^+ \pi^- \pi^0 \eta$
- **x** The known $\omega\eta$ and $\phi\eta$ contributions explain about 50-60% of the cross section below 1.8 GeV.
- **\times** Above 1.8 GeV the dominant reaction mechanism is $\alpha_0 \rho$

 $\sigma(e^+e^- \rightarrow \omega \eta)$, nb

$e^+e^- \rightarrow \omega \pi^0 \eta$ @ SND

Phys. Rev. D 94,032010 (2016)

- First measurement of the $e^+e^- \rightarrow \omega \pi^0 \eta$ cross section.
- The dominant mechanism is $\omega a_0(980)$.
- ■The cross section is about 2.5 nb, 5% of the total hadronic cross section

Summary

- ✓ The SND detector accumulated ~120 pb⁻¹ of integrated luminosity at the VEPP-2000 e⁺e⁻ collider in the c.m. energy range 0.3 2 GeV.
- ✓ Data analysis on hadron production is in progress. The obtained results have comparable or better accuracy than previous measurements ($\omega \pi^0$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\eta$, n anti-n, $\pi^0\gamma$, K^+K^-)
- ✓ For several processes the cross sections have been measured for the first time (ηγ, $\pi^+\pi^-\pi^0\eta$, $\omega\pi^0\eta$)
- ✓ After VEPP-2000 upgrade, data taking was resumed, with a goal of ~1 fb⁻¹ of integrated luminosity.