Recent Highlights from Spin Structure Study of proton in PHENIX Experiment at RHIC

Itaru Nakagawa
RIKEN/RBRC
On behalf of PHENIX Spin
Collaboration

Central p0, two particle correlation

TRANSVERSE SINGLE SPIN ASYMMETRY

Rapidity Dependent Asymmmetries in p+p

PHENIX Detector

Central arms $|\eta|$ <0.35

- Neutral pions
- Direct photons
- Identified charged hadrons
- Jets
- $W \rightarrow e$
- J/ψ and heavy flavor electrons

Muon arms $1.2 < |\eta| < 2.4$

- J/ψ
- Heavy flavor muons
- W→μ

MPC $3.1 < |\eta| < 3.9$

- Neutral pion/eta
- EM cluster

ZDC
$$|\eta| > 5.9$$

Zero-degree neutrons

Transverse Asymmetry Observables

What Could be the Cause?

- Sivers Effect
 +higher twist
- transverse-momentum dependence of partons inside the transversely-polarized nucleon

- Collins Effect
 +higher twist
- correlation between transversely-polarized nucleon and transversely polarized partons inside
 EPS-ME Collins fragmentation function

A-dependent Central π^0 Asymmetries

gg/gq dominates

New PHENIX data show $A_N \sim 0$ in p+p even with improved statistical precision.

Central π^0 (| η |<0.35)

• First nuclear dependence attempt show no A-dependence and consistent with $A_N \sim 0$.

17/07/07

EPS-HEP 2017

7

Forward Open Heavy Flavor

Data: PRD95, 112001(2017)

Theory: Y. Koike, S. Yoshida PRD84:014026

- Data are consistent with zero and Sivers-type Twist-3 three-gluon correlation functions within statistical error
- A-dependence study is underway.

A-dependent Forward J/W Asymmetry

Heavy flavor probes sensitive to gluon Sivers-type effect via gluon fusion production

- Contradict to central π^0 result, observed unexpected large A-dependence in low-p_T
- Different behavior from forward π^0 A_N in p+p.

ALICE, Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV 2.5 < y < 4 $0 \le p_{_{ m T}} < 0.3$ GeV/c, global syst = \pm 15.7 % $0.3 \le p_{_{ m T}}$ < 1 GeV/c, global syst = \pm 15.1 % $1 \le p_{\pm} < 8$ GeV/c, global syst = \pm 11.5 % Common global syst = \pm 6.8 % 8.0 0.6 0.5 250 300 350 $\langle N_{\text{part}} \rangle$ **STAR Preliminary** ■ Au+Au 200 GeV U+U 193 GeV p+p baseline uncertainty 10 N_{coll} uncertainty centrality: 60 - 80% 60-80% 10^{-2} 10^{-1} p_{_} (GeV/c) 17/07/07

10.1103/PhysRevLett.116.222301

Hypothesis?

- ALICE and STAR observed enhancement in J/ψ at peripheral A +A collisions and at very low $p_{\rm T}$ (~0.1 GeV/c). Interpretation could be photonuclear/two photon process that produce J/ψ in A+A collisions
- Does this effect contribute to p+A $\rightarrow J/\psi + X$ and manifested as very different A_N than p+p? Other ideas?
- Caveat: PHENIX J/ψ A_N cut on p_T >0.42 GeV/c (region with good azimuthal resolution for A_N) and coincided with a valid BBC vertex

EPS-HEP 2017 10

Very Forward Neutron A_N in p+p

$$A_{N} \approx \frac{\left(\phi_{non-flip}^{*}\phi_{flip}\sin\delta\right)}{\left|\phi_{non-flip}\right|^{2} + \left|\phi_{flip}\right|^{2}}$$

 δ : phase shift

EPS-HEP 2017

A-Dependence of Very Forward Neutron A_N

arXiv:1703.10941

- Observed strikingly strong A-dependence.
- Opposite sign of A_N in p+Au compared to p+p
- Possible UPC effect in addition to conventional strong interaction

$$A \xrightarrow{\alpha} \prod_{\pi^+} n$$

Strong + UPC Calculation

-0.6

EPS-HEP 2017

G. Mitsuka PRC95,044908(2017)

$$A_{17/0N/07}^{\text{UPC+HAD}} = \frac{\sigma_{\text{UPC}} A_N^{\text{UPC}} + \sigma_{\text{HAD}} A_N^{\text{HAD}}}{\sigma_{\text{UPC}} + \sigma_{\text{HAD}}}$$

Invariant Mass [MeV]

13

Summary

- Explored A-dependence of transverse single spin asymmetries in wide rapidity region.
- No asymmetry observed in central region neither $p^\uparrow + p$ nor $p^\uparrow + Au$.
- Observed unexpectedly strong A-dependence in forward J/ψ and very forward neutron asymmetries.
- Important role of UPC effect is demonstrated at least for very forward neutron asymmetries.
- To be investigated further:
 - Heavy flavor D/B decay m Asymmetry in p[↑]+A
 - $-p_{T}$ dependence for further test of UPC effect

BACKUP SLIDES

Study initiated investigating the non-TMD-factorized process

• High p_T two-particle correlation has been a valuable tool to study interaction between hard probe in QGP

- It can also be used to construct two scale observables in p+p and p+A collisions
- Not factorizable in TMD framework
- But how their behavior difference from the factorizable observables (like DY)?

 $p_{
m out}$

17/07/07

EPS-HEP 2

Study initiated investigating the nonfactorized process - First Results

Example of TMD-factorized process: DY in Pythia simulation Positive width against scale (M) As expected in CSS evolution

Non-TMD-factorized process: π^0+h , $\gamma+h$ Data and Pythia simulation:

Both show negative width slope against scale (p_T^{trig}) Very different from CSS indicate impact from color flow

Study initiated investigating the nonfactorized process: first p+A result

- First preliminary release of p+A π^0+h result
- Wider Gauss core for p_{out} in p+A collisions: multiple scattering in A?
- Stronger p_T^{trig} dependence in peripheral p+Au: Interpretation in discussion

