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How much information is added to the Review of Particle Physics 
when a new decay branching ratio of a hadron is measured and reported? 
This is quantifiable by Shannon's information entropy. 

We show results at the level of the distribution of decay-channel probabilities,
(that is, individual quantum states are integrated over). 

We illustrate the concept with some examples.

2) Entropy of branching fraction distributions  

1) Shannon entropy and its properties

3)   Gedanken  cases

4)Actual examples from meson decay distributions

A basic problem in information theory:

How much information is there in a message?

 For n bits that take the value 0 with probability p
                                                  or 1 with probability (1-p)

It is a simple combinatorial problem to find 
the number of sequences that can be composed

Gibbs 
Mixing Entropy

5)  Where else?

     With a partition:            N1            N2

                                             Without a partition:              N1       +     N2

 = N!  / (N1! N2!)

S= KB ln 

Stirling approximation:  ln N! ≃ N ln N              ln  - N1ln(N1/N) - N2ln(N2/N) 
    

xi = Ni / N S = -NKB (x1 ln x1 + x2 ln x2)  

Atomic deexcitation or nuclear decay

If the decay has several branches
the same concepts apply

With Stirling's approximation, 

“ENTROPY” of information

Name inspired by the mixing entropy (see box 5)

For a random variable X that takes 
N values xi with probability p(xi), generalize to

How to choose the base of the log ?
Information in bits:   log2

             in “nats”:    ln
            in “hartleys”:   log10

An interesting choice is logN  

When the probability of the two 
channels is very different 

(near 0 and 1, respectively), 
the entropy is very small

This is because the particle
almost always decays by the one 

channel with probability 1. 
We have maximum information: 

the decay is predictable.

When the two channels are  about 
equally likely, the entropy is maximal;
here near 1 because we use bits-base 2 

log 2 2=1

This is because the particle
decays equally by either channel

so we cannot tell ahead:
 minimum predictive power
i.e. minimum information

Number of different combinations (“states”):

Nucleonica.com

We add the channels
one by one, detracting 

each time from the 
generic “ 1 - pi ln pi ”

The entropy saturates when 
the further channels are of 

little importance,
just the uncertainty (from the 
PDG  BRs keeps increasing)

At that point, 
most of the width is

already accounted for:
measuring additional channels 

barely adds information

Limiting 
values

 of  the entropy

The J/y furbishes an interesting example:
its decays can be somewhat understood 

perturbatively in terms of quarks/gluons
as an alternative to reconstructed hadrons.

While the decays 
described in terms 

of hadrons 
keep accruing 

entropy S, as they 
are all small...

In terms of 
quarks and 
gluons, the 

entropy saturates 
as a few channels 
account for most 
of the width .

Partial width to decay through channel f: Total width: sum of them all

Branching
ratios

Take BR as the randomly distributed
variable belonging to (0,1) 

For each decay channel f

Shannon entropy for the distribution
of the branching ratios.
All decay channels are assumed to be 
known. What if some are missing? 

Group all unknown
channels into one

with BR given
by subtracting 

all known channels
from 1.

Effect of discovering a new decay mode

Upon adding
a new 

channel
S grows
as a log

if all taken 
with equal
branching 
ratio 1/N

Number of channels known among N=50

On the contrary, if the additional channels discovered have a 
decreasingly small branching ratio, then S can be saturated by the first few. 

*) For an equally distributed variable (box 3) with pi=1/N:

*) S(x) is continuous, positive, convex and additive, 
that is, if we split a set N into two subsets N1 and N2

1=

In that case the max. S is 1
which allows comparing 

different “alphabets” (later, the 
decay of different particles)

This property makes it useful to analyze particle decays 
with an increasing number of reconstructed channels

A way of seeing S:
as the weighted average (with weights p(xi))

of the “information obtained when the
variable X takes the value xi”,

IX(xi) = - ln p(xi)


