

Andrii Usachov on behalf of the LHCb Collaboration

LAL, Orsay

Hidden and open heavy flavour production at LHCb

Selected measurements:

- Double J/ψ production at $\sqrt{s} = 13 \, TeV \, \text{JHEP} \, 1706 \, 047$
- J/ψ production in jets at $\sqrt{s} = 13$ TeV PRL 118 192001
- Prompt charm production at $\sqrt{s} = 5 \text{ TeV } \text{arXiv:} 1610.02230$
- b -hadron production asymmetries $\sqrt{s} = 7.8 \, TeV$ arXiv:1703.08464
- χ_c and $\eta_c(2S)$ production in inclusive b-decays at $\sqrt{s} = 7.8$ TeV arXiv:1706.07013
- J/ψ production at $\sqrt{s} = 13 \, TeV$, updated JHEP 1705 063

See other talks:

- "Spectroscopy with heavy flavours at LHCb" by Patrick Spradlin (06/07, 12:45)
- "Measurement of Inelastic cross-section and CEP with the LHCb detector" by Michael Schmelling (06/07, 09:30)
- "Quarkonium measurements in pPb and PbPb collisions at LHCb" by Francesco Bossu (06/07, 10:15)
- "Open heavy flavour measurements in pPb collisions at LHCb" by Patrick Robbe (06/07, 10:45)
- "Highlights from the LHCb Experiment" by Ulrik Egede (11/07/2017, 09:00)

LHCb detector

Important for heavy flavour production study:

- Precise vertex reconstruction with VELO
- Powerful charge particle ID
- Robust trigger

- Covers complementary to ATLAS and CMS p_t and η range
- Access to the PDFs in high and low x regions

 not studied by previous experiments v
- LHCb can explore region down to $x < 10^{-4}$ (below gluon density uncertainty becomes large)

LHCb detector

IJMPA30 (2015), 1530022 JINST 3 (2008) S08005

Important for heavy flavour production study:

- Precise vertex reconstruction with VELO
- Powerful charge particle ID
- Robust trigger

- Covers complementary to ATLAS and CMS p_t and η range
- Access to the PDFs in high and low x regions

 not studied by previous experiments v_{10}^2
- LHCb can explore region down to $x < 10^{-4}$ (below gluon density uncertainty becomes large)

Heavy flavour production: motivation

- Variety of measurements
 - Open heavy flavour production and polarization
 - Quarkonium production and polarization
 - **Associative** and correlated production
- Important study for QCD, both perturbative and non-perturbative parts
 - **tests of QCD** predictions
 - determination of **non perturbative parameters**
 - probe of proton structure
- Required for MC tuning → inputs for precision flavor physics measurements
- Precise knowledge of SM background for New Physics searches

JHEP 1706 047 Double J/ψ production at $\sqrt{s} = 13 \, TeV$

Production via Double Parton Scattering(DPS) or Single Parton Scattering(SPS)

$$\sigma_{DPS} = rac{1}{2} rac{\sigma(J/\psi)^2}{\sigma_{eff}}$$

- → DPS provides important information on gluon correlations and parton PTdistribution
- In LHCb studied using clean 4-muon signature:

Double
$$J/\psi$$
 production at $\sqrt{s} = 13 \, TeV$ JHEP 1706 047

$$\sigma(\ensuremath{J\!/\psi}\xspace\ensuremath{J\!/\psi}\xspace\xspace\ensuremath{J\!/\psi}\x$$

• Differential production cross-section studied in bins of kinematical variables

- Results show evidence of DPS contribution
- From fit of kinematical distributions **DPS fraction** and σ_{eff} are extracted
- Values of σ_{eff} extracted from the fit of different kinematic variables using various SPS descriptions

$$\sigma_{eff} = 10 - 12nb$$

^{*}agreement between fits of $|\Delta y|$, $p_T(J/\psi J/\psi)$, $y(J/\psi J/\psi)$, $m(J/\psi J/\psi)$

J/ψ production in jets at $\sqrt{s} = 13 \, TeV$

- J/ψ produced in **direct parton scattering** or **through parton showering**
- Additional flavor fixing constraints in hadronization
- Can explain the lack of observed polarization
- Separate prompt and b-decays using fit of \tilde{t} distribution $\tilde{t} \equiv (z_{J/\psi} z_{PV}) \frac{m (J/\psi)}{p_J(J/\psi)}$

• Perform fit in bins of $\mathbf{z}(J/\psi) \equiv \frac{p_T(J/\psi)}{p_T(jet)}$

prompt J/ψ is observed to be **less isolated than in PYTHIA**

→ big contribution from parton showering

Prompt charm production at $\sqrt{s} = 5 \text{ TeV}$

arXiv:1610.02230

• Important test of perturbative QCD and factorization

- Differential production cross sections
- Relative production cross-section ratios

$$\sigma(pp \to D^0 X) = 1004 \pm 3 \pm 54 \,\mu\text{b},$$

 $\sigma(pp \to D^+ X) = 402 \pm 2 \pm 30 \,\mu\text{b},$
 $\sigma(pp \to D_s^+ X) = 170 \pm 4 \pm 16 \,\mu\text{b},$
 $\sigma(pp \to D^{*+} X) = 421 \pm 5 \pm 36 \,\mu\text{b}.$

- 13/5 TeV production ratios:
- → more precise that previously presented for 13/7 TeV ratio
- → general agreement with theoretical predictions

• $\sigma(b \to c\bar{c}X)$ extracted using known fragmentation $f(c \to D)$ PLB667 (2008) 1.

b –hadron production asymmetries at
$$\sqrt{s}$$
 = 7,8 *TeV* arXiv:1703.08464
$$A_p = \frac{\sigma(\overline{H_b}) - \sigma(H_b)}{\sigma(\overline{H_b}) + \sigma(H_b)}$$

- Expected favoring H_b rather than $\overline{H_b}$ especially at high rapidity
- Inclusive b and \bar{b} production are the same
- Key information for performing CP violation measurements
- $A_p(B^+)$ accessed using final state charge of the decay $B^+ \to J/\psi K^+$
- $A_p(B^0)$ and $A_p(B^0_s)$ time dependent analysis performed to tag initial state using $B^0 \to J/\psi K^*$ and $B^0_s \to D_s^- \pi^+$

$$A_{raw} = A_p + A_{CP} + A_{det}$$

- A_{CP} external information: theory or measurement
- A_{det} determined from control samples

b –hadron production asymmetries at $\sqrt{s} = 7.8 \, TeV$ arXiv:1703.08464

All results are consistent with zero:

$$\begin{array}{lll} A_{\rm P}(B^+)_{\sqrt{s}=7\,{\rm TeV}} &=& -0.0023 \pm 0.0024 \; ({\rm stat}) \pm 0.0037 \; ({\rm syst}), \\ A_{\rm P}(B^+)_{\sqrt{s}=8\,{\rm TeV}} &=& -0.0074 \pm 0.0015 \; ({\rm stat}) \pm 0.0032 \; ({\rm syst}), \\ A_{\rm P}(B^0)_{\sqrt{s}=7\,{\rm TeV}} &=& 0.0044 \pm 0.0088 \; ({\rm stat}) \pm 0.0011 \; ({\rm syst}), \\ A_{\rm P}(B^0)_{\sqrt{s}=8\,{\rm TeV}} &=& -0.0140 \pm 0.0055 \; ({\rm stat}) \pm 0.0010 \; ({\rm syst}), \\ A_{\rm P}(B^0_s)_{\sqrt{s}=7\,{\rm TeV}} &=& -0.0065 \pm 0.0288 \; ({\rm stat}) \pm 0.0059 \; ({\rm syst}), \\ A_{\rm P}(B^0_s)_{\sqrt{s}=8\,{\rm TeV}} &=& 0.0198 \pm 0.0190 \; ({\rm stat}) \pm 0.0059 \; ({\rm syst}), \end{array}$$

• Production asymmetries studied in bins of (p_T, η)

fitted by $A_n = ay + b$:

$oldsymbol{y}$	$\sqrt{s} = 8 \text{TeV}$			
	B^+	B^0	B_s^0	
$a[10^{-4}]$	-86 ± 29	-44 ± 100	-217 ± 321	
$b [10^{-3}]$	19 ± 9	-4 ± 32	85 ± 105	
ho(m,q)	-0.93	-0.99	-0.98	

No evidence for any dependence is observed

b –hadron production asymmetries at $\sqrt{s} = 7.8 \, TeV$ arXiv:1703.08464

• For Λ_b^0 determined indirectly

$$A_{P}\left(\Lambda_{b}^{0}\right) = -\left(\frac{f_{u}}{f_{\Lambda_{b}^{0}}}A_{P}(B^{+}) + \frac{f_{d}}{f_{\Lambda_{b}^{0}}}A_{P}(B^{0}) + \frac{f_{s}}{f_{\Lambda_{b}^{0}}}A_{P}(B_{s}^{0}) + \frac{f_{c}}{f_{\Lambda_{b}^{0}}}A_{P}(B_{c}^{+}) + \frac{f_{other}}{f_{\Lambda_{b}^{0}}}A_{P}(other)\right)$$
*using previous measurement of $\frac{f_{q}}{f_{\Lambda_{b}^{0}}}$

$$estimated to be 2 \times 10^{-3}$$

• Results are consistent with zero:

$$A_{\rm P}(\Lambda_b^0)_{\sqrt{s}=7\,{
m TeV}} = -0.0011 \pm 0.0253 \; ({
m stat}) \pm 0.0108 \; ({
m syst}),$$

 $A_{\rm P}(\Lambda_b^0)_{\sqrt{s}=8\,{
m TeV}} = 0.0344 \pm 0.0161 \; ({
m stat}) \pm 0.0076 \; ({
m syst}).$

• Slight increase with p_T and η (was seen by direct measurement Chin.Phys. C40 011001)

11

χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s}=7.8~TeV$ arXiv:1706.07013

- Powerful test of NRQCD factorization, universality of LDME and heavy quark spin symmetry assumptions
- Aiming at constraining LDMEs simultaneously by prompt and b-decays measurements
- 2D fit of $M(K^+K^-_1) \times M(K^+K^-_2)$ in bins of M(KKKK) to select true $\phi\phi$ combinations

 χ_c and $\eta_c(2S)$ production rates measured using previously measured BR $(b \to \eta_c(1S)X)$

χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s}=7.8~TeV$

First measurement of χ_{c0} production in inclusive b-decays

- arXiv:1706.07013
- The most precise measurements of $BR(b \to \chi_{c1}X)$ and $BR(b \to \chi_{c2}X)$
- $BR(b \to \chi_{c1}X)$ and $BR(b \to \chi_{c2}X)$ are in agreement with measurements at B-factories

First measurement of $\eta_c(2S)$ production in inclusive b-decays; first evidence of $\eta_c(2S) \to \phi \phi$

$$\frac{BR(b \to \eta_c(2S)X)}{BR(b \to \eta_c(1S)X)} \frac{BR(\eta_c(2S) \to \phi\phi)}{BR(\eta_c(1S) \to \phi\phi)} = 0.040 \pm 0.011 \pm 0.004$$
 (3.7 σ significance)

 $\eta_c(2S)$ production as a function of assumed $\Gamma[\eta_c(2S)]$

 \rightarrow first step to measure $\eta_c(2S)$ hadroproduction

Updated production measurements

- Several production measurements were performed very promptly
- Realized that was a problem in MC simulation efficiencies
- VELO simulation was updated (for Run II) to take into account radiation damage
 - One of the effect arises from charge induction on second metal layer routine lines
 - An error was made in parametric implementation of these effects
 - \rightarrow track reconstruction efficiency was underestimated in simulation for tracks with low η

Updated measurements:

- Prompt charm production at $\sqrt{s} = 5$ TeV [updated, resubmitted arXiv:1610.02230]
- Prompt charm production at $\sqrt{s} = 13 \, TeV$ [updated, published JHEP 09 (2016) 013]
- J/ψ production at $\sqrt{s} = 13$ TeV [updated, published JHEP 1705 063]
- Double J/ψ production at $\sqrt{s} = 13 \, TeV$ [updated, published JHEP 1706 047]

J/ψ production at $\sqrt{s} = 13$ TeV, updated JHEP 1705 063

- Several production measurements were performed very promptly
- Realized that was a problem in MC simulation efficiencies
- VELO simulation was updated (for Run II) to take into account radiation damage
 - One of the effect arises from charge induction on second metal layer routine lines
 - An error was made in parametric implementation of these effects
 - ightharpoonup track reconstruction efficiency was underestimated in simulation for tracks with low η

15

Summary

Significant LHCb contribution to study of heavy flavour production mechanisms

- Double J/ψ production
 - → study of Double Parton Scattering
- J/ψ production in jets
 - \rightarrow important to explain J/ψ polarization and for MC generators
- *b* –hadron production asymmetries
 - → key ingredient to perform CP violation measurements
- Prompt charm production
 - → test of perturbative QCD
- χ_c and $\eta_c(2S)$ production in inclusive b-decays
 - → aiming to test NRQCD together with prompt production measurements

More results in progress with Run II data

Prompt charm production at $\sqrt{s} = 5 \text{ TeV}$

Analysis

$$D^0 \rightarrow K^- \pi^+$$

• Measured using decays:

$$D^+ \to K^- \pi^+ \pi^+$$

$$D_s^+ \to (K^- K^+)_{\phi} \pi^+$$

$$D^{*+} \to D^0 \pi^+$$

• Invatiant mass and $\ln(\chi_{IP}^2)$ fits in bins of (p_T, η) to extract signal yields

Results:

$$S\left(t,\psi
ight) \propto \left[1-\psi\left(A_{CP}+A_{D}
ight)
ight] \ \left\{e^{-\Gamma_{d(s)}t}\left[\Lambda_{+}\cosh\left(rac{\Delta\Gamma_{d(s)}t}{2}
ight)+\psi\Lambda_{-}\cos\left(\Delta m_{d(s)}t
ight)
ight]\otimes R\left(t
ight)
ight\}\epsilon\left(t
ight) \ \Lambda_{\pm} \equiv \left(1-A_{\mathrm{P}}
ight)\left|rac{q}{p}
ight|^{1-\psi} \pm \left(1+A_{\mathrm{P}}
ight)\left|rac{q}{p}
ight|^{-1-\psi}$$

χ_c and $\eta_c(2S)$ production in inclusive b-decays using $\phi\phi$ at $\sqrt{s}=7.8$ TeV. Normalized differential production

Exponential slopes of normalized differential prodcution cross-section are extracted:

	$\eta_c(1S)$	χ_{c0}	χ_{c1}	χ_{c2}	
$\sqrt{s} = 7 \text{TeV}$	0.41 ± 0.02	0.32 ± 0.04	0.31 ± 0.06	0.30 ± 0.05	
$\sqrt{s} = 8 \text{TeV}$	0.39 ± 0.02	0.37 ± 0.04	0.41 ± 0.06	0.33 ± 0.04	