

# SENSITIVITY TO LONG-BASELINE OSCILLATION PHYSICS

Justo Martín-Albo (Oxford U.) for the DUNE Collaboration

EPS Conference on High Energy Physics — Venice, 5th June 2017



The *Deep Underground Neutrino Experiment* is a next-generation long-baseline oscillation experiment between Fermilab (Illinois) and the Sanford Underground Research Facility (South Dakota) consisting of

- a new MW-scale neutrino beamline (LBNF);
- a 4×10-kilotonne (fiducial) liquid argon far detector;
- a high-resolution, high-rate near detector.





#### The primary science program of DUNE includes:

- Long-baseline neutrino oscillations
  - Leptonic CP violation
  - Neutrino mass ordering
  - Precision test of the 3-neutrino mixing framework
- Nucleon decay
- Neutrino astrophysics (e.g. core-collapse supernovae)







| Speaker                            | Session                                                                                                                                                                 | Date and time                                                                                                                                                                                                                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I. Gil Botella (CIEMAT)            | Astroparticles                                                                                                                                                          | July 6, 14:30                                                                                                                                                                                                                                                 |
| A. Higuera (Houston)               | Neutrinos                                                                                                                                                               | July 6, 17:15                                                                                                                                                                                                                                                 |
| M. Potekhin (BNL)                  | Detectors &<br>Data Handling                                                                                                                                            | July 6, 17:15                                                                                                                                                                                                                                                 |
| N. McConkey (Sheffield)            | Detectors &<br>Data Handling                                                                                                                                            | July 6, 17:30                                                                                                                                                                                                                                                 |
| M. Wallbank (Sheffield)            | Poster                                                                                                                                                                  | July 10, 18:00                                                                                                                                                                                                                                                |
| S. Bordoni, L. Whitehead<br>(CERN) | Poster                                                                                                                                                                  | July 10, 18:00                                                                                                                                                                                                                                                |
| Diego García-Gámez<br>(Manchester) | Poster                                                                                                                                                                  | July 10, 18:00                                                                                                                                                                                                                                                |
|                                    | I. Gil Botella (CIEMAT)  A. Higuera (Houston)  M. Potekhin (BNL)  N. McConkey (Sheffield)  M. Wallbank (Sheffield)  S. Bordoni, L. Whitehead (CERN)  Diego García-Gámez | I. Gil Botella (CIEMAT)  Astroparticles  A. Higuera (Houston)  M. Potekhin (BNL)  Detectors & Data Handling  N. McConkey (Sheffield)  Detectors & Data Handling  M. Wallbank (Sheffield)  Poster  S. Bordoni, L. Whitehead (CERN)  Diego García-Gámez  Poster |









#### **DUNE FAR DETECTOR: LIQUID ARGON TPC**



- ND has fundamental role for LBL physics, constraining systematic uncertainties through the measurement of neutrino flux and interaction cross sections.
- It will record largest sample of neutrino interactions ever collected.
- Also sensitive to new physics (e.g. heavy sterile neutrinos).
- DUNE ND currently under design. Conceptual design ready by 2018.
- It will likely feature a modular liquid argon TPC and a magnetised, high-resolution tracker.





#### LBL EXPERIMENTAL STRATEGY



- Electron-neutrino appearance amplitude depends on  $\theta_{13}$ ,  $\theta_{23}$ ,  $\delta_{CP}$  and matter effects. All four can be measured in a single experiment.
- Broadband beam and long baseline break degeneracy between CPV and matter effects.

#### LBL EXPERIMENTAL STRATEGY



#### LBL EXPERIMENTAL SENSITIVITIES

All the following sensitivity plots consider these assumptions:

- Oscillation parameters from NuFit2016.
- Staging scenario with equal running in neutrino and antineutrino modes:
  - Year 1 (2026): 20-kt FD with 1.07 MW beam.
  - Year 2 (2027): 30 kt FD.
  - Year 4 (2029): 40 kt FD.
  - Year 7 (2032): upgrade to 2.14 MW beam.
- GLoBES-based fit to the FD samples, with parameterised detector response.



#### **SENSITIVITY TO MASS HIERARCHY**



Width of bands represents range of sensitivities for the 90% CL region in  $\theta_{23}$  values. Sensitivity increases with increasing  $\theta_{23}$ .

#### SENSITIVITY TO CP VIOLATION



Width of bands represents range of sensitivities for the 90% CL region in  $\theta_{23}$  values. Sensitivity decreases with increasing  $\theta_{23}$ .

#### SENSITIVITY TO CP VIOLATION



### MEASUREMENT OF OSCILLATION PARAMETERS



Long-baseline experiments will approach the resolution of reactor experiments in the measurement of the mixing angles.

#### IMPACT OF SYSTEMATIC UNCERTAINTIES



The difference between 1% and 3% normalisation uncertainty in the electron neutrino sample translates into a factor of 2 in exposure.

#### **SUMMARY**

- DUNE will use a broadband beam and a long baseline (1300 km) to make a precise, simultaneous measurement of the mass ordering, the CP-violation phase and the neutrino mixing angles.
  - Comparison to other oscillation channels allows unitarity test.
  - Sensitive as well to new physics affecting oscillation probabilities.
- The mass, high granularity and deep underground location of the DUNE far detector provide good sensitivity to baryon non-conservation and supernova burst neutrinos.
- DUNE physics program will produce interesting results at each stage of 20+ year operation.

## BACKUP SLIDES

EPS Conference on High Energy Physics — Venice, 5th June 2017

#### LBNF NEUTRINO BEAMLINE

- 60-120 GeV protons from Fermilab Main Injector.
- Wide energy spectrum covers the 1st and 2nd oscillation maxima.
- Initial upward pitch, 101 mrad pitch to point to South Dakota.
- Initially 1.2 MW, upgradeable to 2.4 MW.



#### **DUNE FAR DETECTOR: LIQUID ARGON TPC**



Working principle of a (single phase) liquid argon time projection chamber.