

The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

N. Marinelli
On behalf of the CMS collaboration

Contents

- CMS Ecal
- ☐ HL-LHC Physics motivation
- ☐ HL-LHC
- ☐ ECAL @ the LH-LHC
- ☐ Ecal Barrel upgrade
 - Overview
 - ☐ APD noise
 - ☐ Anomalous signals
 - ☐ Precision timing
 - ☐ VFE design
 - ☐ FE & Off-detector
 - Prototypes
- Conclusions

The CMS legacy electromagnetic calorimeter

Barrel (EB) $|\eta| < 1.48$ 61200 crystals

Endcaps (EE) $1.48 < |\eta| < 3.0$ 14648 crystals

Pb/Si preshower $1.65 < l\eta l < 2.6$

Homogeneous PbWO4 (PWO) scintillating crystals calorimeter

- Compact
- hermetic
- fine-grained
- high resolution

Design parameters:

- Energy resolution: σE/E <1% above 100GeV
- Granularity: $\Delta \eta \times \Delta \phi \approx 0.0174 \times 0.0174$
- Noise: 50MeV in the barrel and 150MeV in the endcap region
- Appropriate radiation tolerance

EB crystals are arranged in 36 Super Modules Light is readout by Avalanche Photo Diodes

HL-LHC Physics motivation

Electrons and photons are crucial for Higgs boson precision studies and BSM searches

TODAY

 $H \rightarrow \gamma \gamma$: Resolution on $m_{\gamma \gamma} \sim 1\%$

Discovery of SM di-Higgs (HH) production is one of the main goals of the HL-LHC

HH production will help us measure the Higgs Boson self coupling, which determines the shape of the Higgs potential and helps us understand the vacuum stability of the universe

High-Luminosity LHC (HL-LHC)

HL-LHC will provide unprecedented instantaneous & integrated luminosity in a highly challenging environment

- Higher instantaneous and annual integrated luminosity
- Much higher levels of overlapping events: pile-up (PU)
- Radiation levels will be 6x higher than for LHC

ECAL at the LH-LHC

While EE crystals are expected to suffer large transparency losses due to the high radiation level

→ Replace in LS₃ (previous talk)

EB crystals are expected to survive well during HL-LHC -- Transparency loss < 50% --

However life will be made difficult by

- increased dark current in the APD → increased noise
- high Pileup

Motivations for EB upgrade

Make FE and Off-detector electronics adequate to Phase II L1 requirements

→ Replace VFE/FE and off-detector electronics
Insure same performance (resolution) as at LHC
Improve mitigation of anomalous signals (spikes)

	L1 rate	L1 latency
Phase I	150 KHz	6.4 µs
Phase II	750 KHz	12.5 μs

ECAL Barrel upgrade: overview

- ☐ 5x5 crystals arrangement, APDs, mother boards and mechanical structure will not change
- Reduce operating temperature: from 18°C to 8°C
- □ VFE: shorter shaping time+ optimized sampling + new ADC
- ☐ FE: single channel readout at 160MHz, 30Gb/s Latency buffer and all processing are moved off-detector
- ☐ Upgraded high-speed links
- ☐ Unified path for data and trigger
- New Off-detector electronics will run trigger primitive generation + algorithm for timing and spike removal → Max flexibility

It implies removal, refurbishment, reinstalling commissioning of 36 SM during LS3

ECAL Barrel upgrade: APD noise

η

APD dark current increases with integrated luminosity

→ x10 more noise after 3000 fb⁻¹

Dark current strongly depends on temperature

- → mitigate negative effects by cooling down (more)
- → Going from 18°C to 8°C reduces noise by 35%

New VFE with shorter signal shaping time helps reducing the $\forall t$ noise component

Recover resolution of today

0.5

ECAL Barrel upgrade: anomalous signals

Hadrons, occasionally, hit the APDs, releasing energy directly in the bulk (spikes)

- Large signals, can exceed 100 GeV
- They are isolated signals unlike genuine e/γ which spread over many crystals
- ◆ The signal in the APD is faster and narrower
- Rate is proportional to the LHC collision rate
 - → if not suppressed they lead to unsustainable L1 EG rate

Spike rejection

- ☐ Currently rejected at L1 with coarse topological algorithm very sensitive to PU level
 - → Rejection efficiency expected to drop to un-acceptable levels

Upgrade will include high granularity readout and VFE/FE design to cope with increased spike rates

ECAL Barrel upgrade: precision timing

For the H $\rightarrow \gamma \gamma$ analysis the right primary vertex assignment within 1 cm is vital to the M($\gamma \gamma$) resolution

Precision timing would help with:

- Keeping the vertex assignment efficiency close to the Run 1 level (~80%)
- Subtracting the in-time pileup neutral energy from EM clusters as well as identifying jets from pileup

The intrinsic timing resolution of PbWO₄+APD is < 30 ps

VFE designed with short shaping time and sampling at 160MHz will bring us close to the intrinsic resolution, i.e. ~30ps at 50 GeV

ECAL Barrel upgrade: VFE design

[

UNCHANGED

- 5x5 channel modularity
- ☐ Lead-tungstate crystals with two APDs connected in parallel
- Motherboard
- Dual-Gain Trans Impedance Amplifier with dynamic range 50MeV-2GTeV
 - precision timing
 - minimise APD noise, OOT PU
 - maximises spike rejection

Measured spike and scintillation pulse shapes

VFE demonstrator w/TIA

Dual ADC

- ☐ 12 bit @ 160 MHz
- Loss-less data compression

ECAL Barrel upgrade: FE & Off-Detector

12

Front End:

- ♦ Full readout of 5 VFE cards: 5x5x13bits @ 160 MHz
- ♦ Move L1A pipeline off-detector to accommodate 12.5 μs CMS latency
- ♦ Move trigger primitive generation off-detector
- ♦ Data links from FF to off-detector. readout cards based on **CERN GBT, lpGBT and Versatile links**
- ♦ IpGBT allows up to ~10Gb/s bandwidth on the common data-trigger path

FE demonstrator

N. Marinelli

ECAL Barrel upgrade: FE & Off-Detector

OFF-DETECTOR demonstrator

Off-detector

Powerful processing boards needed to deal with large amount of EB data

- ♦ Amplitude extraction and BX identification
- **♦** Signal shape analysis for spike rejection
- **♦** Channel calibration
- **♦ Timing**
- **♦ Clustering**
- **♦ Fine-grained trigger primitive generation**

Conclusions

The challenging conditions of the HL-LHC will require:

- Longer data pipeline, more bandwidth
- Improved spike filter at trigger level
- Mitigation of increased APD noise
- Precision timing for vertex determination & PU mitigation

The upgrade will rejuvenate the ECAL barrel making it ready for a new successful decade of operation

Requires full refurbishment of ECAL barrel on-detector electronics during LS3

- Replace/optimize FE & VFE to cope with increased noise, pileup, spikes
- New off-detector readout cards to process higher granularity/bandwidth data from FE → Move all algorithms off-detector allows for tuning when necessary
- Lower by 10°C the operating temperature to mitigate increase of

Backup

Ecal Barrel in pictures

