Reconstruction and identification of hadronic objects with CMS

Mauro Verzetti, University of Rochester on behalf of the CMS Collaboration EPS2017 - Venice

What do we identify?

- $\tau \rightarrow \nu$ +hadrons TAU-16-002
- Jet flavour:
 - b-jets <u>DP-2017-013</u>
 - c-jets <u>BTV-16-001</u>
 - quarks vs. gluons CMS-JME-16-003
- Boosted objects:
 - t → bqq <u>CMS-JME-16-003</u>
 - W/Z → qq <u>CMS-JME-16-003</u>
 - X → bb (not discussed in this talk) <u>BTV-15-002</u>

Why? - from our spokesman LHCP highlights

Top Pair Cross Sections

CMS: $835 \pm 33 \text{ pb}$ Theory: $816 \pm 42 \text{ pb}$

Top pair rate is > 10 Hz, enabling us to address much more precise questions

- Single and double differential cross sections
- Rare (FCNC) decays
- CP violation (a beginning)
- Width and more complex methods for measuring the mass

Factory Quark Cross Luminosity (cm-2s-1) Section (nb) B (KEKb) 1.15 (Y(4S)) 2.11x10³⁴ **Bottom** 1.51x10³⁴ LHC 0.82 (incl t-t) Top

Top pair production at 13 TeV CM energy is mainly (80%) produced by gluons, providing important information on the gluon distribution at relatively high x, up to ~0.25

J. Butler, CMS Status, LHCP 15/05/17

SUSY Searches

Broad program: 19 searches completed with full 2016 CMS dataset, with several already submitted to journals

- Probing different models (inclusive production, strong and electroweak production, and 3rd generation sparticles (stops)
- Different final states (with leptons, photons, jets) and analysis techniques

Higgs $\rightarrow \tau^+\tau^-$

Four decay topologies for $\tau^+\tau^-$: $e\mu$, $e\tau_b$, $\mu\tau_b$, τ_b

HIG-16-043

35.9 fb⁻¹ (13 TeV

- Three production modes: 0-jet (gg), VBF, boosted (additional
- Irreducible sources of systematics: W+jets, DY $Z/\gamma \rightarrow II, \tau\tau$, t-tbar,

Significance 4.9 σ ; CMS combined will be > 5 σ

J. Butler, CMS Status, LHCP 15/05/17

15/05/17

Boosted Objects, e.g., **Vector Like Quarks**

J. Butler, CMS Status, LHCP

5

Traditional cut-based approach on isolation.

Additional MVA (BDT) approach including strip shape and lifetime information

MVA approach outperforms the cut-based one

Use $Z \rightarrow \tau\tau$, ee, $\mu\mu$ as standard candle to measure efficiency and mis-tagging rate

Heavy flavors

Heavy flavor jets

Heavy flavor jets

DeepNN shows best performance

Heavy flavor jets

Charm tagging

Use two BDT's to discriminate the charm from the light and B components

Heavy flavor jets with DNN — DeepCSV

Heavy flavor jets with DNN — Trying deeper networks

Deep Flavor

Heavy flavor jets with DNN — Trying deeper networks

Deep Flavor

Quarks vs. gluons

Quark / gluon likelihood

Boosted resonances

Boosted objects

Boosted objects - W/Z tagging

Cut-based approach SoftDrop mass and τ₂/τ₁

Alternative tagger with mass/p_T decorrelated (<u>DDT approach</u>) Flat fake rate (advantage for background estimates)

Boosted objects - top

Multiple approaches (cut-based or MVA) leveraging SoftDrop mass, τ_3/τ_2 , sub-jet pair masses, and sub-jet b-tagging

Summary / Outlook

- Hadronic objects are of paramount importance for the CMS physics program
- Wide range of objects identified
 - $\tau \rightarrow v + hadrons$
 - Jet flavour (b, c, quark/gluon)
 - Boosted objects (top, W/Z, X → bb)
- Constant struggle to improve current performance and identify more objects
 - Modern machine-learning tools introduced wisely can greatly boost the performance

Bonus slides

Boosted tau tagging

Semileptonic

Fully hadronic

Unified approach for both τ_h and τ_ℓ :

- 1. Start from AK8 jet
- 2. Identify sub-jet with $p_T > 10 \text{ GeV}$
- Run standard reconstruction on sub-jet constituents

b-tagging performance measurements

Boosted b-tagging

FatJet: CSVv2 w/o retraining. Custom (relaxed) track and SV association directly on anti-k_T 0.8

Sub-jet: CSVv2 w/o retraining applied to sub-jets (soft drop, pruned, etc...). Used for boosted top

Double b: dedicated training targeting boosted resonances X→bb

Boosted b-tagging

SoftDrop (arXiv:1307.0007, arXiv:1402.2657) and pruning (arXiv:0912.0033)

Sub-jettiness

$$\tau_i = \frac{1}{\sum_k p_{T,k} R} \sum_k p_{T,k} \min \left(\Delta R_{1k}, \Delta R_{2k}, \cdots, \Delta R_{ik} \right),$$