

Overview and developments for the Phase-II upgrade of the inner tracker of the ATLAS experiment

Helen Hayward On behalf of the ATLAS Collaboration

Helen Hayward : EPS-HEP 2017

The Inner detector is performing very well!

Why do we need to replace?

- Up to 4000fb⁻¹ integrated luminosity expected for the HL-LHC, corresponding to a fluence of up to 1x10¹⁶ MeV n_{eq}/cm²
 - Radiation Damage
 - Bandwidth Saturation
 - Limitations from Detector Occupancy

	LHC	HL-LHC
Time between beam crossings	25 ns	25 ns
Peak instantaneous luminosity	1x10 ³⁴ cm ⁻² s ⁻¹	7.5 x10 ³⁴ cm ⁻² s ⁻¹
Number of proton-proton interactions per crossing	23	200

Timeline

I will present highlights of the preparation for new Inner Detector TracKer (ITk)

New Design

The ITk should have the same performance as the current detector, but in the harsher environment of the HL-LHC All silicon design, Eta coverage increased from 2.5 to 4.0

08/07/17

R [mm]

STRIP SYSTEM CERN-LHCC-2017-005

Helen Hayward : EPS-HEP 2017

Strip Modules

- Each module side consists of one sensor and one or two low-mass PCB's, called hybrids, hosting the read-out ASICs
- Modules have been designed with mass production and low cost in mind.
- The strips are AC-coupled with n-type implants in a p-type float-zone silicon bulk
 - (n+-in- p FZ).
- n+-in-p technology over the p-in-n used in the current ATLAS SCT is the large difference in the amount of signal after irradiation

Results from Prototype Sensors

Efficiency versus the threshold for four ASICs on a nonirradiated module and one ASIC on an irradiated module $(8x10^{14} n_{eq}/cm^2)$

Module Type	$\begin{array}{c} {\rm Fluence} \\ 10^{14} {\rm n_{eq} cm^{-2}} \end{array}$	$\begin{array}{c} \mathbf{Charge} \ ke^- \\ 500 \ \mathbf{V} \end{array}$	$\begin{array}{c} \mathbf{Charge} \ ke^- \\ 700 \ \mathbf{V} \end{array}$	Noise e^-	m S/N 500 V	S/N 700 V
SS	8.1	13.7	16.1	630	21.8	25.6
\mathbf{LS}	4.1	17.3	19.5	750	23.1	26.0
$\mathbf{R0}$	12.3	11.5	14.0	650	17.7	21.5
$\mathbf{R1}$	10.1	12.5	15.0	640	19.6	23.4
R2	8.7	13.3	15.7	660	20.3	23.9
$\mathbf{R3}$	8.0	13.8	16.2	640	21.4	25.1
$\mathbf{R4}$	6.8	14.6	17.0	800	18.4	21.3
R5	6.0	15.3	17.6	840	18.3	21.1

Maximal expected fluence within the ITk Strip Detector (incl. safety factor).

Collected signal charge at 500V bias voltage for minimum ionising particles as function of 1 MeV n_{eq}/cm^2 fluence for different particles.

Estimated signal-to-noise at the end-of-lifetime for all module types of the ITk Strip Detector.

Strip Mechanics+Results

Thermo-mechanical petal

Petal temperature distribution within FEA model, given the estimated power consumption after 3000fb⁻¹

Planarity of strip petal core Global measured flatness of ~250 μ m

Strip Mechanics

- Simulation analysis is used to predict any possible Geometric instability resulting from environmental changes:
 - Temperature,
 - Moisture desorption,
 - Radiation damage,
 - Mechanical deformation (gravitational sag, external loads, vibration or material effects).

PIXEL SYSTEM

*design being finalised for pixel tdr

Planar sensors baseline for outer layers CMOS also candidates

Design of 3D pixel cells with 50x50 and $25x100\mu m^2$ size

3D pixel detectors are candidates for the innermost layers of the barrel pixel detector

- Excellent radiation hardness at low operational voltages and moderate temperatures
- Low power dissipation

Hit efficiency as a function of bias voltage for different fluence regions on irradiated 3D FE-I4 detector.

Drawing of a quad-module with four FE-I4 chips

with four FE-I4 chips.

Prototype of the quad-module

Baseline planar sensor

- quad modules 4x4cm^2 / dual 2x4cm^2
- Readout chip under development within RD53 collaboration
- 50x50µm²
- N-in-p compared to current n-in-n
- Reduced thickness 100-150µm (currently 200µm)

The response to ²⁴¹Am gamma radiation. The plot shows the number of hits recorded per pixel.

 The high hit pixels are due to their larger size in the inter-chip region.

Planar Pixel Sensors

(Prototype sensors are using FE-I4 chips. The baseline design will use RD53 chips)

- Comparison of hit efficiencies of Different thickness irradiated sensors
 - 100µm sensors can provide same tracking efficiency at lower bias voltages

 Hit efficiency as a function of irradiation for 100µm planar sensors

A typical CMOS sensor pixel cell has a sensor substrate and a CMOS electronics layer embedded in multiple cells

CMOS pixels sensors can with stand radiation fluences > 5 x $10^{15} n_{eq} / cm^2$

CERN-LHCC-2017-005

Promising technology that would reduce costs whilst providing high granularity, radiation hard sensors for outer pixel layers.

Pixel Barrel – Local Supports

Carbon stave prototype

Prototypes have been developed for different possible designs for the local supports.

Truss prototype for Longeron design for outer barrel

I-Beam stave. Modules loaded on both sides (top and bottom)

Pixel Endcap

Pixel Endcap: half cylindrical shells supporting quad modules

Designed to minimise mass of ring system in order to reduce the particle background reaching forward calorimeter and to improve tracking performance at high-eta

3

2

The ITk material budget is around 30% lower in the region $|\eta| < 4.0$, compared to the Run 2 detector.

Reducing material is crucial for good tracking and reducing the fluence

- A new tracker detector is needed for ATLAS to extract good physics measurements out of the HL-LHC
 - Extended eta coverage
 - Low mass
- A lot of work has been done into the design of the ITk
 - Progress achieved by simulations and prototypes.
- We are gearing up to installation in ~2024

