The ATLAS Trigger in Run-2 Design, Menu and Performance

Tamara Vázquez Schröder (McGill University) on behalf of the ATLAS Collaboration

EPS Conference on High Energy Physics Venice, Italy, 6. July 2017

* Introduction

* ATLAS Trigger and DAQ System Overview

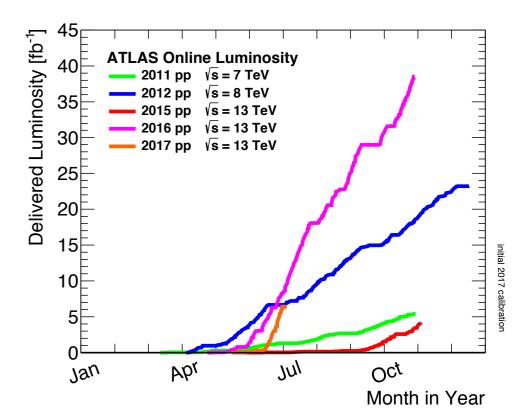
* ATLAS Trigger Menu & Online Performance

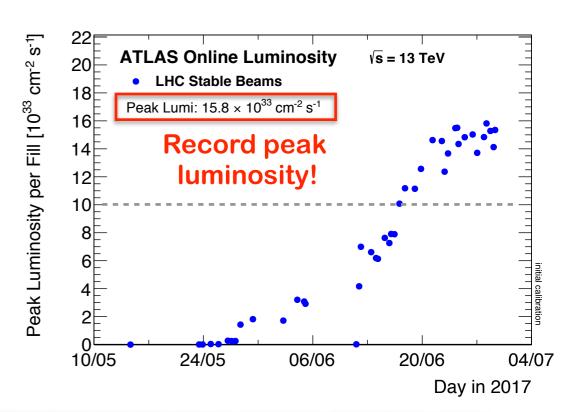
* ATLAS Trigger Rates, CPU Usage & Software Validation

* Highlights ATLAS Trigger Signature Performance

***** Conclusions

Introduction

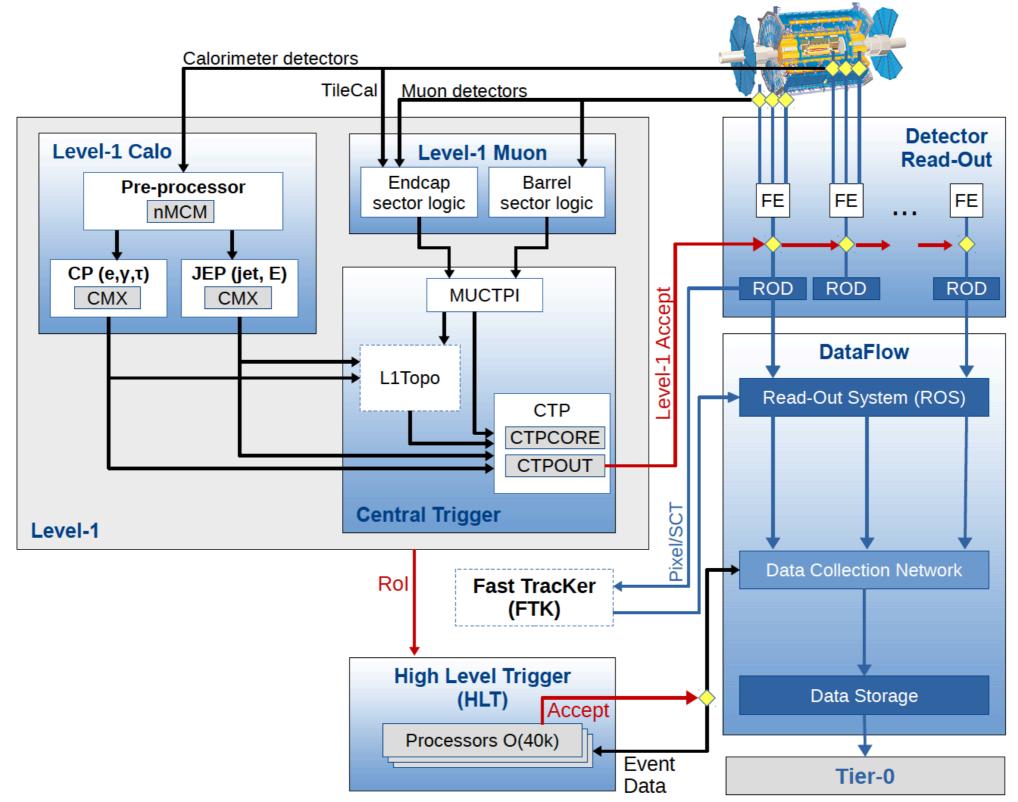

Trigger system decides online whether or not to keep an event


- Crucial **impact on quality** of data used in physics analysis!
- Successful operation of ATLAS Trigger System during first part of Run-2 at the LHC
 - Thanks to **several upgrades and improvements since Run-1** to cope with:
 - Increase of rate
 - Increase of number of interactions per bunch crossing / pileup

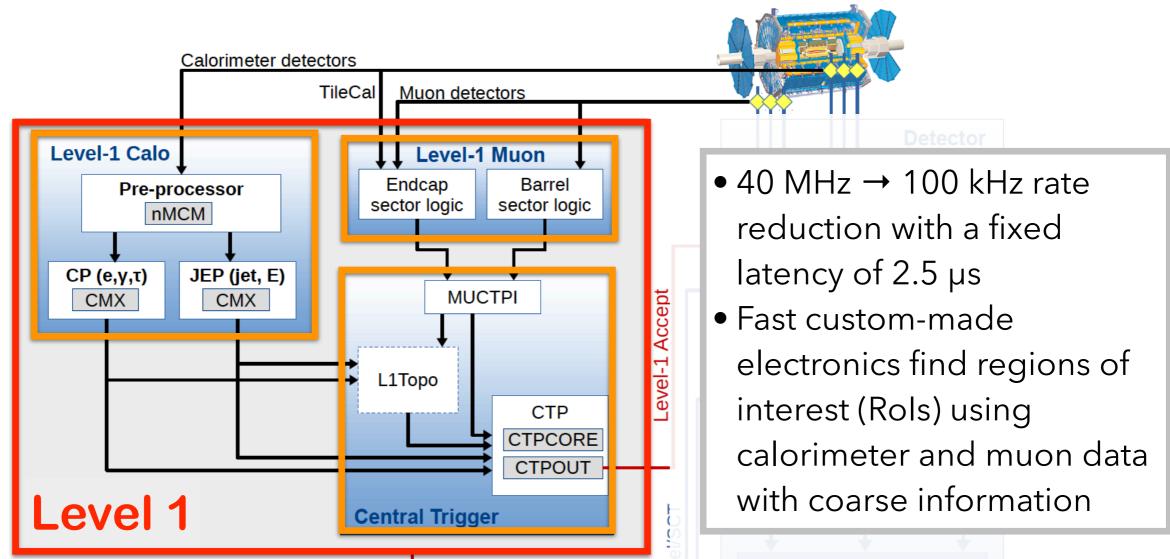
due to:

- higher centre-of-mass energy collisions
- higher instantaneous luminosity

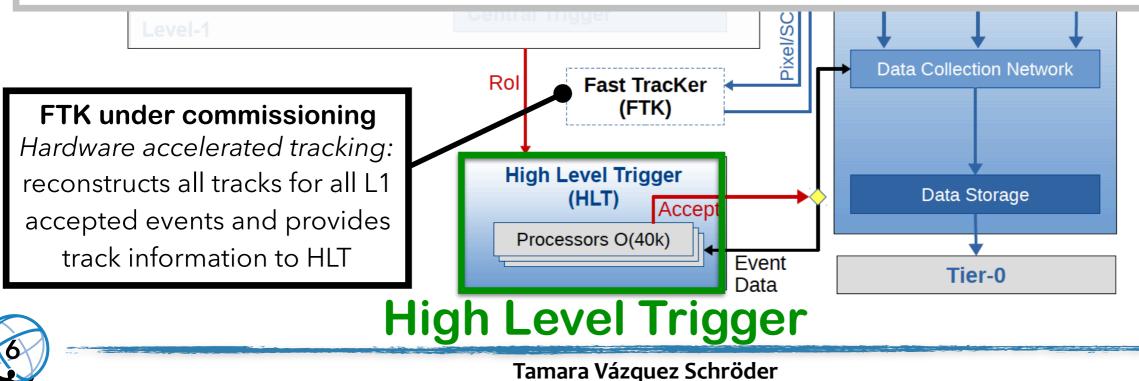
Intensive preparation for second part of Run-2 (2017/2018)



ATLAS Trigger and DAQ System

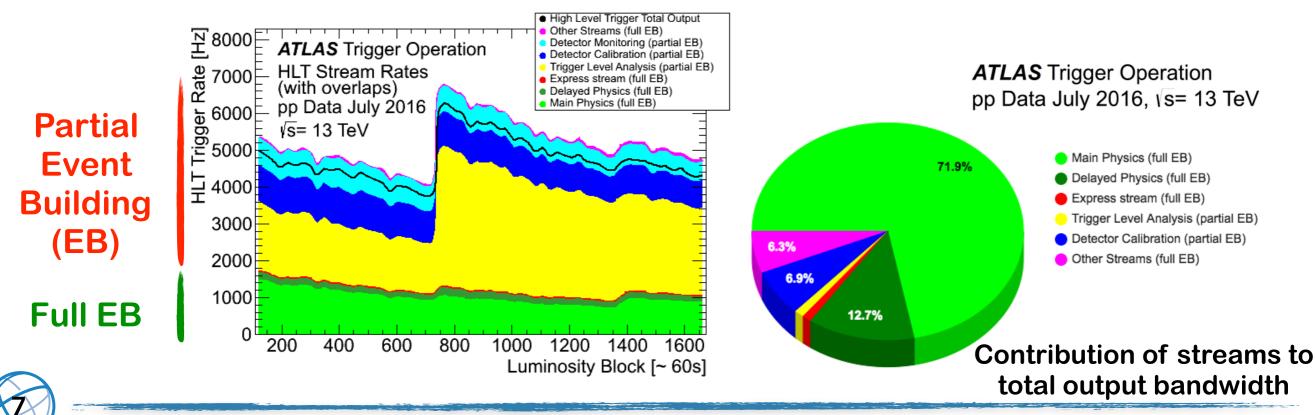


ATLAS Trigger: Level 1 Trigger (L1)


- Upgraded L1 Calo, L1 Muon and CTP (Central Trigger Processor)
 - L1 Calo: new Multi-Chip Module (nMCM) allows more flexible signal processing, more thresholds
 - **L1 Muon**: coincidences with inner detector, additional chambers in the feet of the barrel region and from Tile extended barrel region
 - CTP: more resources, support multi-partition running
- L1Topo
 - Allows for topological selections between L1 trigger objects (e.g. ΔR) to keep L1 thresholds low

Calorimeter detectors

- Single farm (merged L2-EF) for better resource sharing and overall simplification
- Fast offline-like algorithms running mostly in L1 Rols
- Average 350 ms latency
- Full upgrade of readout and data storage systems
- ~1 kHz of physics (full event building) output rate achieved
- Partial event building used for Trigger Level Analysis, detector monitoring and calibrations
- Once HLT is passed, the event is accepted and written into data streams
- Then offline software is run at Tier-0 to reconstruct the objects



ATLAS Trigger Menu: strategy

* The **trigger menu** comprises the list of L1 \rightarrow HLT trigger chains with prescale factors

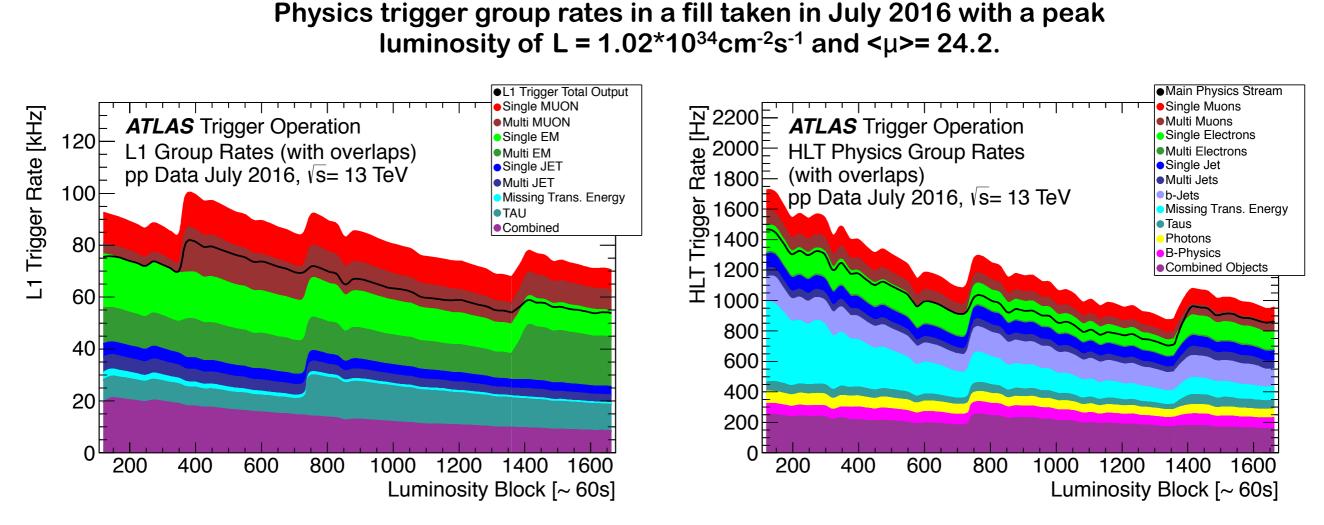
- reflects the physics goals of the collaboration
 - high acceptance for BSM searches & Higgs/SM precision measurements
- takes into account available data taking resources (L1, HLT and Tier-0)
- ***** Trigger menu strategy based on:
 - primary triggers: for physics measurements, typically un-prescaled
 - **support triggers:** for efficiency and performance measurements, monitoring
 - alternative triggers: running alternative online reconstruction algorithms
 - **backup triggers:** tighter selections in case rate of primary trigger too high
 - calibration triggers: run at high rate but store only part of the event

ATLAS Trigger Menu: content

or illustr Trigger	ation: Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
		Level-1 (GeV)	HLT (GeV)	Rate (kHz) $L = 1.2 \times 10^{\circ}$	Rate (Hz) 34 cm ⁻² s ⁻¹
Single leptons	Single isolated μ , $p_{\rm T} > 27$ GeV	20	26 (i)	13	133
	Single isolated tight $e, p_{\rm T} > 27 \text{ GeV}$	22 (i)	26 (i)	20	133
	Single μ , $p_{\rm T} > 52 \text{ GeV}$	20	50	13	48
	Single $e, p_{\rm T} > 61 {\rm GeV}$	22 (i)	60	20	13
	Single τ , $p_{\rm T} > 170 { m GeV}$	60	160	5	15
Two leptons	Two μ 's, each $p_{\rm T} > 15 {\rm GeV}$	2×10	2×14	1.5	21
	Two μ 's, $p_{\rm T} > 23, 9 \text{ GeV}$	20	22, 8	13	30
	Two loose <i>e</i> 's, each $p_{\rm T} > 18 \text{ GeV}$	2 × 15	2×17	8	7
	One <i>e</i> & one μ , $p_{\rm T} > 8,25 {\rm GeV}$	20 (µ)	7, 24	13	2
	One loose e & one μ , $p_{\rm T} > 18, 15$ GeV	15, 10	17, 14	1.5	2.6
	Two τ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	20 (i), 12 (i) (+jets)	35, 25	6	35
	One τ & one isolated μ , $p_{\rm T} > 30, 15 \text{ GeV}$	12 (i), 10 (+jets)	25, 14 (i)	1.5	7
	One τ & one isolated $e, p_{\rm T} > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	25, 17 (i)	3	9
Three leptons	Three loose <i>e</i> 's, $p_{\rm T} > 18, 11, 11 {\rm GeV}$	15, 2 × 8	$17, 2 \times 10$	15	< 0.1
	Three μ 's, each $p_{\rm T} > 7 \text{ GeV}$	3 × 6	3×6	0.1	3
	Three μ 's, $p_{\rm T} > 21, 2 \times 5$ GeV	20	$20, 2 \times 4$	13	4
	Two μ 's & one loose $e, p_T > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu's)$	$2 \times 10, 12$	1.5	0.2
	Two loose e's & one μ , $p_{\rm T} > 2 \times 13, 11 \text{ GeV}$	$2 \times 8, 10$	$2 \times 12, 10$	1.1	0.1
One photon	One loose γ , $p_{\rm T} > 145 {\rm GeV}$	22 (i)	140	20	30
Two photons	Two loose γ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	2 × 15	35, 25	8	40
	Two tight γ 's, $p_{\rm T} > 27, 27$ GeV	2 × 15	2×22	8	16
Single jet	Jet $(R = 0.4), p_{\rm T} > 420 {\rm GeV}$	100	380	3	38
	Jet $(R = 1.0), p_{\rm T} > 460 {\rm GeV}$	100	420	3	35
E ^{miss} T	$E_{\rm T}^{\rm miss} > 200 { m GeV}$	50	110	6	230
Multi-jets	Four jets, each $p_{\rm T} > 110 \text{ GeV}$	3×50	4×100	0.4	18
	Five jets, each $p_{\rm T} > 80 {\rm GeV}$	4 × 15	5×70	3.5	14
	Six jets, each $p_{\rm T} > 70 \text{ GeV}$	4×15	6×60	3.5	5
	Six jets, each $p_{\rm T} > 55$ GeV, $ \eta < 2.4$	4 × 15	6×45	3.5	18
<i>b</i> –jets	One <i>b</i> ($\epsilon = 60\%$), <i>p</i> _T > 235 GeV	100	225	3	24
	Two <i>b</i> 's ($\epsilon = 60\%$), $p_{\rm T} > 160, 60 {\rm GeV}$	100	150, 50	3	20
	One $b \ (\epsilon = 70\%)$ & three jets, each $p_{\rm T} > 85 \text{ GeV}$	4 × 15	4×75	3.5	19
	Two <i>b</i> ($\epsilon = 60\%$) & one jet, $p_{\rm T} > 65, 65, 110 \text{ GeV}$	2 × 20,75	2 × 55, 100	2.7	25
	Two $b (\epsilon = 60\%)$ & two jets, each $p_{\rm T} > 45 \text{ GeV}$	4 × 15	4 × 35	3.5	56
-physics	Two μ 's, $p_{T} > 6, 6$ GeV plus dedicated <i>b</i> -physics selections	6, 6	6, 6	4.7	20
Total (inc	luding more triggers than lis	tod horo)		85	1500

Menu designed for different peak luminosities

- In 2016 reached 1.4x10³⁴ cm⁻²s⁻¹ luminosity
 - above LHC design luminosity!
- In 2017, baseline menu designed for 2x10³⁴ cm⁻²s⁻¹ luminosity
- Primary triggers kept stable within a menu
- Flexibility to adjust to changing conditions during LHC ramp-up


Over 3000 trigger chains running online and covering a large spectra of physics objects and processes!

* Menu deployed with different prescale sets depending on luminosity

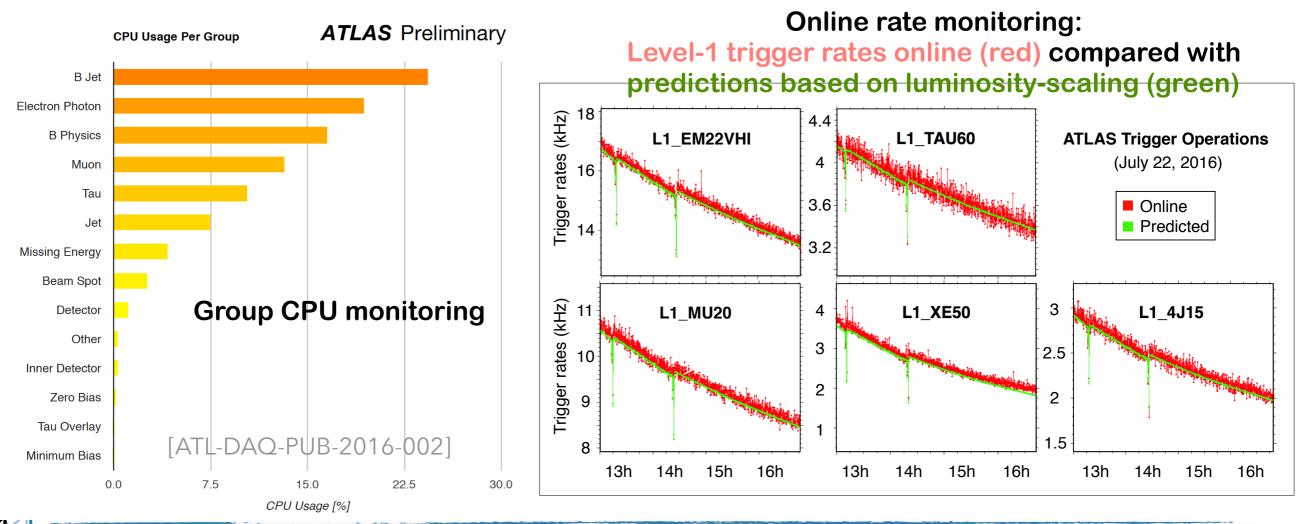
• as luminosity decreases throughout the fill, the bandwidth usage is optimised by increasing the rate of supporting triggers

***** Event size ~ 1.6 MB (uncompressed) for $<\mu>$ = 24.9 in 2016

9

ATLAS Trigger Monitoring Performance Online

- * Distributions of HLT-level quantities monitored online
- * Automatic data quality (DQ) checks applied based on standardised histogram analyses and comparisons to reference histograms
- ***** Track performance of the HLT via red (alarm), yellow (warning) and green (OK) DQ
- * Similar procedure followed offline to declare data good for physics
- Menu-aware monitoring scheme allows to update monitoring configuration out-of-sync with software releases with very small latency (~hr)


ATLAS Trigger Rates & CPU usage

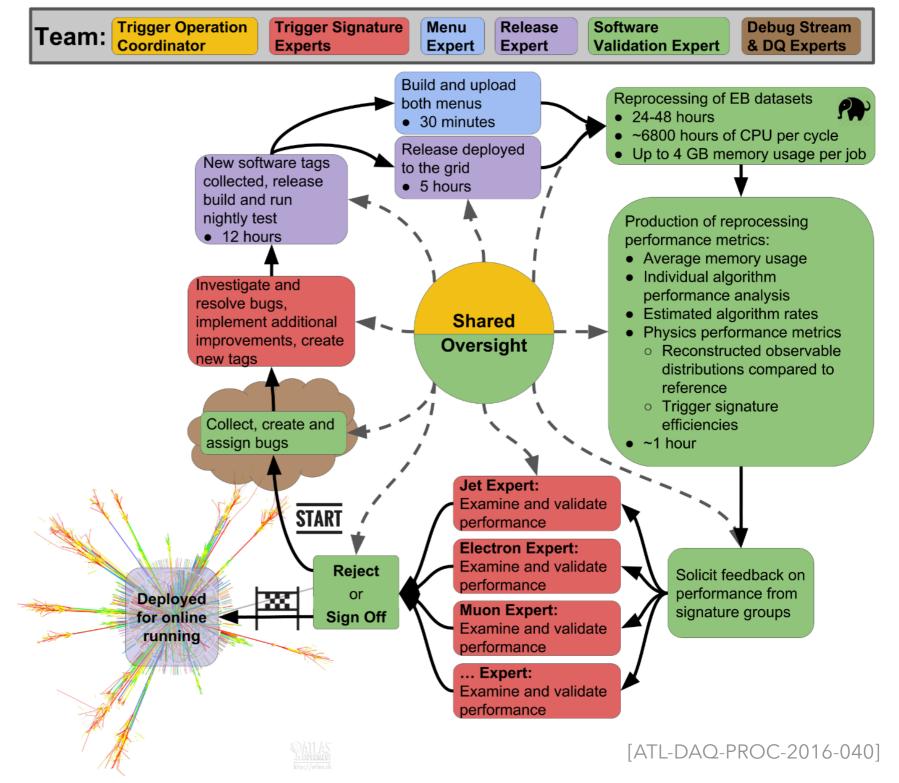
* Trigger rate predictions and HLT farm performance studies essential for all menu developments and validation of HLT algorithms

- Special dataset (EnhancedBias) collected every time data-taking condition changes to provide rate predictions
 - For the EB dataset, events are selected by the L1 trigger system that emphasises higher energies and object multiplicities, and the selection bias is corrected for with event weights

* Significant improvement in timing for tracking ID trigger

ATLAS Trigger software validation

Full trigger menu and HLT software run offline over the EnhancedBias dataset for algorithm validation

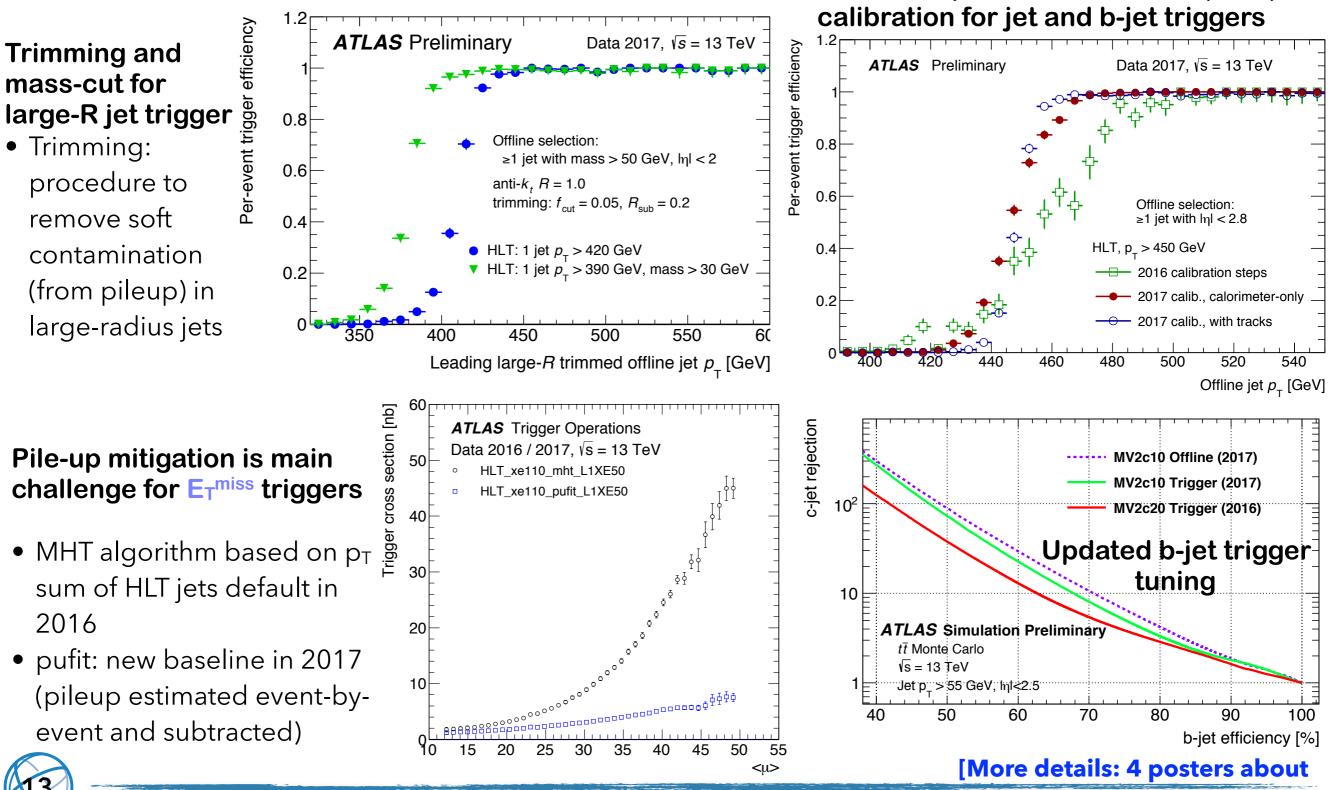

* Weekly HLT release validation involving experts in trigger menu, HLT release, software validation, and trigger signature experts

≭ High memory

consumption jobs run in the Grid

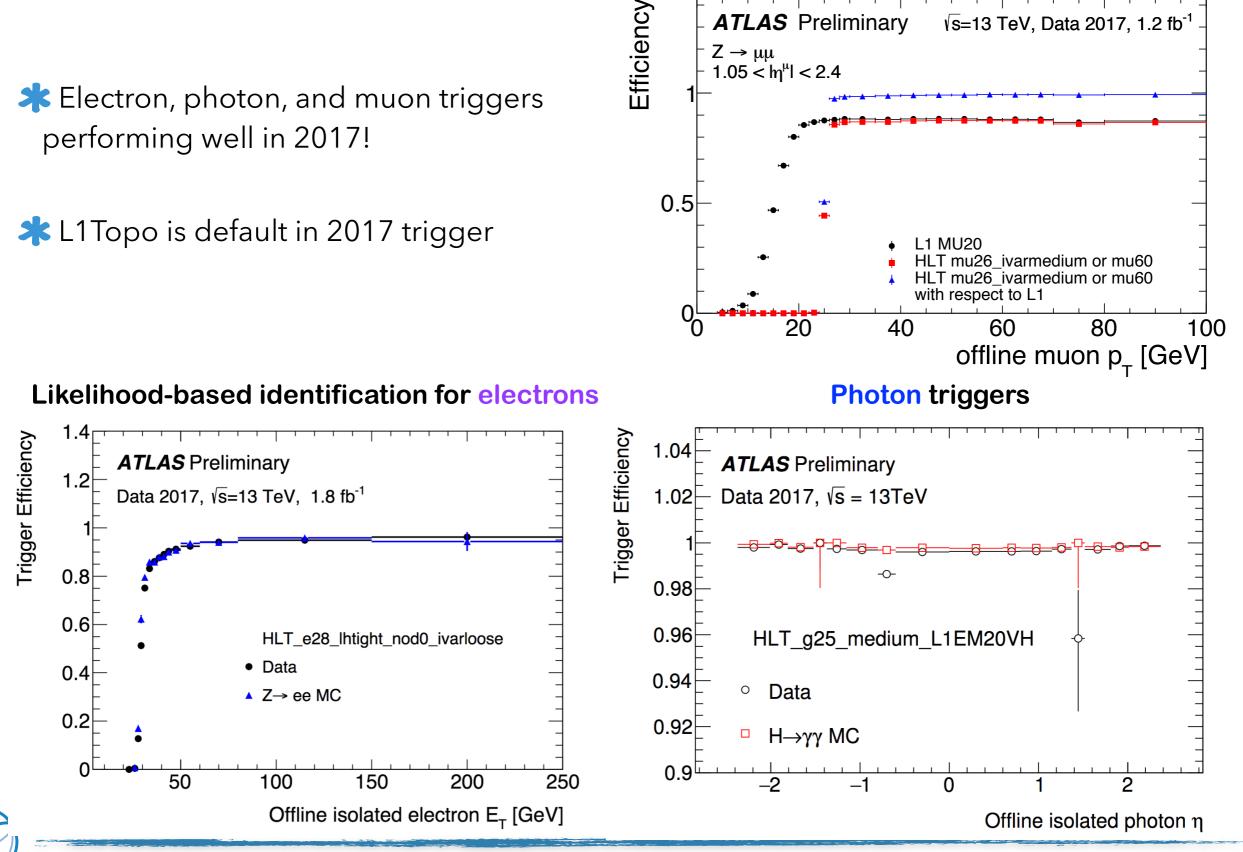
*** New in 2017**:

- Improved CPU usage of trigger chains
- Automation of release build and distributed every night w/o expert action



ATLAS Trigger **signature performance (I)**

* Several improvements in L1 and HLT Trigger Systems reflected in the performance of the trigger objects, some examples new in 2017: Global Sequential Calibration (GSC)



trigger performance]

ATLAS Trigger signature performance (II)

Muon triggers

* Hardware and software modified and improved during the shutdown to cope with challenges during LHC Run 2

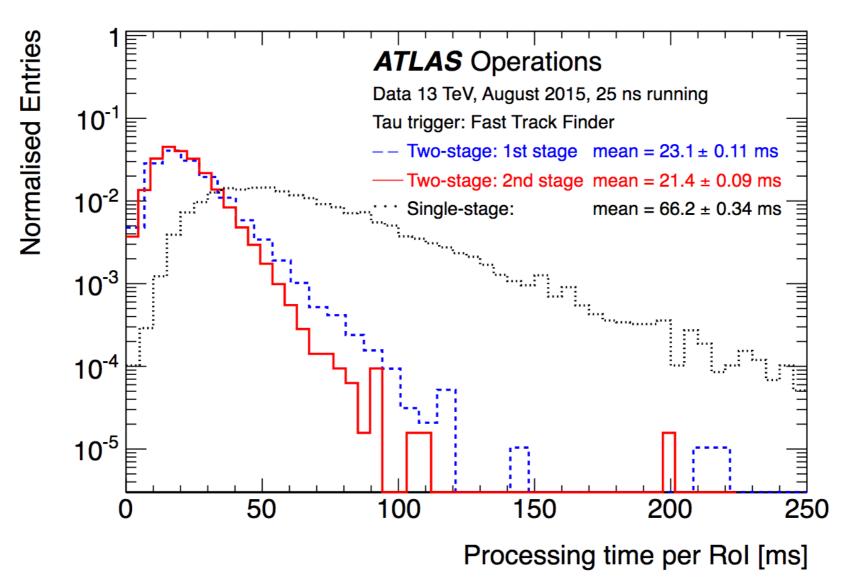
***** Trigger successfully commissioned in 2015

* Smooth trigger operation in 2016 despite the very challenging LHC conditions

Impressive improvements were made in preparation for the expected highest ever luminosities and pileup in the 2017/18 LHC run

***** Further improvements ahead:

• Integration of FTK


Supporting material

HLT Inner Detector Tracking trigger timing

The Run 2 HLT Inner Detector tracking trigger processing time for the Fast Track Finder stage for the tau signature. Shown are the times for the *single-stage*, and the *two-stage* tracking. In the *single-stage* tracking, the tracking is performed in a single, large Region of Interest (RoI) with $\Delta \eta = 0.4$, $\Delta \phi = 0.4$ and $\Delta z = 225$ mm with respect to the RoI direction and position z=0 along the beamline. In the *two-stage* tracking, the tracking is first performed in an RoI with $\Delta \eta = 0.1$, $\Delta \phi = 0.1$ and $\Delta z = 225$ mm with respect to the RoI direction, to identify the core tracks, and then a second tracking stage is performed in an updated RoI centred on the highest p_T track with $\Delta \eta = 0.4$, $\Delta \phi = 0.4$ and $\Delta z = 10$ mm with respect to that track. The total mean time for the two-stage tracking is 44.5 ms corresponding to a fractional saving in processing time for the fast tracking with respect to the single-stage tracking of greater than 30%. The data were taken during collisions in August 2015 with the LHC colliding with a 25 ns bunch spacing. The mean number of interactions per bunch crossing was <µ> ~ 14.

