

The NA62 Calorimeter Level 0 Trigger Operation and Performances

Andrea Salamon INFN Sezione di Roma Tor Vergata

for the NA62 Level 0 Trigger Working Group

06/07/2017

- Ultra-rare decays with the highest CKM suppression
- Very clean from the theoretical point of view

-
$$BR_{SM}(K^+ \to \pi^+ \nu \nu) = (8.4 \pm 1.0) \cdot 10^{-11}$$

- $BR_{SM}(K_{\perp} \to \pi^0 \nu \nu) = (3.4 \pm 0.6) \cdot 10^{-11}$

- Very sensible to many NP models
- Almost unexplored from the experimental point of view

- BR(K⁺
$$\rightarrow \pi^{+}\nu\nu)$$
=(17.3^{+11.5}_{-10.5})·10⁻¹¹

- − BR($K_{\mu} \rightarrow \pi^{0} v v$)<2.6·10⁻⁸ (90% C.L.)
- See G. Ruggiero's talk: "Recent results from Kaon Physics"

06/07/2017

NA62 The NA62 experiment at CERN SPS

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

Goal: O(10%) precision measurement of BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)

- Statistics: O(100) events
- K decays 10¹²
- Signal acceptance ~ 10%
- > 10¹² background rejection

06/07/2017

Broader Physics program:

- G. Lanfranchi: Searching for hidden sectors particles at NA62
- M. Koval: New Limits on Heavy Neutrino from NA62

NA62 The NA62 experiment at CERN SPS

The NA62 detector

- 2015: Commissioning run
- 2016: Commissioning + Physics Run (40% nominal intensity)
- 2017: Physics Run (55-60% nominal intensity)
- 2018: Physics Run
- SM Sensitivity with 2016 data

MA62 The Trigger and DAQ System

Three trigger levels:

LO: Hardware synchronous level. 10 MHz to 1 MHz. Max latency: 1 ms.

L1: Software level. "Single detector". 1 MHz to 100 kHz. Max latency: O(1 s).

L2: Software level. "Complete events". 100 kHZ to O(kHz).Max latency: spill period O(10 s).

12 sub-detectors, ~ 80 000 channels, 25 GB/s raw data.

NA62 The NA48 Liquid Krypton electromagnetic calorimeter

$K^+ \rightarrow \pi^+ \pi^0$ VETO

For $K^{\scriptscriptstyle +}$ \rightarrow $\pi^{\scriptscriptstyle +}$ $\pi^{\scriptscriptstyle 0}$ decays in the decay fiducial region and for E_{π} < 35 GeV 80% of the photons are in the Lkr acceptance

06/07/2017

NA62 The NA48 Liquid Krypton electromagnetic calorimeter

27 X₀

13248 channels

$$\frac{\sigma_E}{E} = \frac{0.032}{\sqrt{E}} + \frac{0.09}{E} + 0.0042$$

$$\sigma_{X,Y} = \frac{0.42}{\sqrt{E}} + 0.06$$

$$\sigma_t = \frac{2.5}{\sqrt{E}}$$
 (GeV, cm and ns)

Photon veto in the angular decay region 1-8.5 mrad

For $K^+ \rightarrow \pi^+ \pi^0$ decays in the decay fiducial region and for $E_{\pi} < 35$ GeV 80% of the photons are in the Lkr acceptance Inefficiency < 10⁻⁵ for $E_{\chi} > 10$ GeV

06/07/2017

Venice - EPS HEP 2017

(from F Hahn)

NA62 The NA62 Calorimeter L0 trigger

- Identifies electromagnetic clusters in the calorimeter and prepares a timeordered list of reconstructed clusters (time, position and energy) for the L0 Trigger Processor
- Low granularity readout independent from CREAMs full granularity readout
- Fast readout for L1 software triggers and/or Region of Interest for the Lkr full granularity readout at L1

06/07/2017

Calorimeter L0 trigger implementation

- 37 9U TEL62 electronics modules + 111 dedicated mezzanines installed in 3 crates
- 864+20 input channels (tiles), 16 bit @ 40 MHz per tile from the calorimeter readout modules (CREAM) over 15 meters high quality Ethernet cables (560 Gbps)
- 1 trigger output channel (Gbit Ethernet) to the L0 Trigger Processor
- 29 raw data + 7 reconstructed clusters readout channels to L1 and DAQ
- Less than 100 µs output latency

06/07/2017

NA6Z

Peak reconstruction

For each input channel:

- Threshold check: E_i[n] > E_{th}
- Peak in space: $E_{i-1}[n] < E_i[n]$ AND $E_i[n] > E_{i+1}[n]$, E ADC count, i tile number, n sample number
- Peak in time: E_i[n-2] < E_i[n-1] < E_i[n] AND E_i[n] > E_i[n+1]
- Parabolic interpolation in time around maximum
- Constant fraction discriminator with linear interpolation between samples n-2 and n-1

06/07/2017

2015 commissioning run: one missing FE board, one broken Ethernet cable, one broken channel

06/07/2017

NA62 Liquid Kripton Calorimeter

- 1 D + 1 D pixel based algorithm: LKr divided in slices parallel to the y axis.
- Front-End boards (28): peaks in space and time **indipendently** searched in ٠ each vertical slice: digital constand fraction discriminator + linear interpolator for fine timing.
- Merger boards (7): peaks close in space and time merged and assigned to the ٠ same electromagnetic cluster. Overlap resolution to avoid double counting: only clusters with maximum along x axis in the yellow area are reconstructed.

NA62 Calorimetric trigger performances


```
Venice - EPS HEP 2017
```


Conclusions

The NA62 calorimetric trigger processor (for $K^+ \rightarrow \pi^+ \pi^0$ rejection) has been designed, installed, commissioned and is taking data.

Instantaneous hit rate: 30 MHz

Time resolution: 2.5 ns

Latency: < 100 μ s

2016: Commissioning + Physics run (SM sensitivity) 2017-2018: Physics runs

Thanks a lot for your attention!