The upgrade project of the T2K near detector

Davide Sgalaberna for the T2K collaboration,
University of Geneva,
EPS-HEP conference (Venice 8/7/17)
The T2K experiment

- Long-baseline neutrino oscillation experiment in Japan
- Precise measurement of neutrino oscillation parameters ($\sin^2\theta_{23}$, Δm^2_{32}, $\sin^2\theta_{13}$) and search for CP violation

NIM A 659 (2011) 106–135

T2K-II phase: 20×10^{21} Protons On Target (POT) by 2025: $\sim x3$ T2K approved
- exclude CP conservation hypothesis at more than 3σ if $\delta_{CP} \sim -\pi/2$ and NH
- Need to reduce the systematic error and the cross-section model dependence

arXiv:1609.04111
The T2K off-axis near detector: ND280

• 2.5° off the neutrino beam axis:
 - narrow beam at oscillation maximum
• 0.2 T dipole magnet
• 2 Fine-Grain-Detectors (FGD) as active target (XY):
 - FGD1: plastic scintillator
 - FGD2: water + plastic scintillator
• 3 vertical TPCs

Good acceptance only for forward tracks
ND280 upgrade detector configurations

- Keep the current tracker (2 FGDs + 3 vertical TPCs)
- Build new tracking detectors upstream
 - horizontal plastic scint. detector (1.8x0.6x2 m³)
 - 2 horizontal TPCs

<table>
<thead>
<tr>
<th>Current</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Mass (tons)</td>
<td>2.2</td>
</tr>
</tbody>
</table>
ND280 upgrade detector configurations

- Keep the current tracker (2 FGDs + 3 vertical TPCs)
- Build new tracking detectors upstream
 - horizontal plastic scint. detector (1.8x0.6x2 m³)
 - 2 horizontal TPCs

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Mass (tons)</td>
<td>2.2</td>
<td>4.3</td>
</tr>
</tbody>
</table>
The New horizontal TPCs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value for 1 TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>1.8(x) x 0.8(y) x 2.0(z) m³</td>
</tr>
<tr>
<td>Volume</td>
<td>2.9 m³</td>
</tr>
<tr>
<td>Drift Length</td>
<td>90 cm</td>
</tr>
<tr>
<td>Pad area</td>
<td>~1 cm²</td>
</tr>
<tr>
<td></td>
<td>(~2 cm² resistive MM)</td>
</tr>
<tr>
<td>Sensitive area</td>
<td>3.2 m⁴</td>
</tr>
<tr>
<td># MM</td>
<td>16</td>
</tr>
<tr>
<td># channels</td>
<td>3.2x10⁴</td>
</tr>
</tbody>
</table>

- Plan to build a thin (few cm) field cage (Aleph / ILC scheme)

Resistive Bulk MicroMegas (charge spread, intrinsic spark protection)
The new scintillator-based target detector

- We are considering several options
 - simulation studies are ongoing to choose the technology with best performance

1) FGD-like detector: well known technology

- FGD XY rotated by 90°
- Extruded plastic scintillator bars coated with TiO$_2$
- MPPC (S10362-13-050C) 1.3x1.3 mm2
 (PDE@525nm 26-30%)
- ~30 photoelectrons per MIP crossing a bar
- FGD1 (scint. layers), FGD2 (scint.+water layers)
The new scintillator-based target detector

• We are considering several options
 - simulation studies are ongoing to choose the technology with best performance

1) FGD-like detector: well known technology
• FGD XY rotated by 90°
• FGD3D: bars along XYZ directions
 - 3 views with 3 hits
 - 25% of volume is air
 - no water cross section measurement
The new scintillator-based target detector

- We are considering several options
 - simulation studies are ongoing to choose the technology with best performance

1) FGD-like detector: well known technology
- FGD XY rotated by 90°
- FGD3D: bars along XYZ directions
 - 3 views with 3 hits
 - 25% of volume is air
 - no water cross section measurement

2) Scintillator fiber detector (XY fibers)
- Kuraray 2mm single-clad
- 23.7±0.1 p.e./mm @15cm (MIP)
- Expect very good performance but many channel (>300k)

- R&D by Neutrino group of Kyoto University at Research Center for ELectron PHoton Science (ELPH), Tohoku University
The new scintillator-based target detector

3) WAGASCI-like detector
- T59 experiment will run at J-PARC (JPS Conf. Proc. 8, 023003 (2015))
- prototype running in front of the T2K On-Axis detector

- Empty or filled with water: measurement of neutrino interactions in water
- Efficiency to select muons $\geq 90\%$ over the full solid angle
- Empty module drastically reduces the momentum threshold (~ 300 MeV/c for protons) but 3 times less target mass
The new scintillator-based target detector

4) SuperFGD
 - plastic scint. 1x1x1 cm3 cubes coated
 - all the volume is fully active
 - 3 views per hit

- Simulation studies and hardware R&D are ongoing
- 230 cubes manufactured by Uniplast chemical company (Russia)
 - light yield (cosmics): ~150 pe/MIP in total
 - prototype and test beam in Autumn

arXiv:1707.01785
Time of Flight detector

• Determine the sense of the tracks
• Improve particle identification, e^+ / protons and electrons / muons
 • Extruded plastic scintillator
 - 2 extruded plastic scintillators bars
 - 4 WLS Kuraray 1mm fibers (glued), single connector, 3x3mm2 MPPC, double-end
 - Time resolution is 630-650 ps
 - R&D studies at INR (Moscow)
 • Cast plastic scintillator
 - about 4m attenuation length
 - 8 sensors of 6x6 mm2
 - Time resolution is 120-140 ps
 - R&D at University of Geneva (SHiP)

See A.Korzenew’s poster
Simulation studies

- Simulated with GEANT4 both ND280 upgrade and current-like detectors
- Select ν_μ ($\bar{\nu}_\mu$) Charged-Current (CC) events:
 - muon track reconstructed in either TPC or ECal
- Use ToF informations for track reconstruction

<table>
<thead>
<tr>
<th>Expected # of selected events</th>
<th>10^{21} POT</th>
<th>Current-like</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ</td>
<td>95860</td>
<td>199775</td>
<td></td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>27443</td>
<td>54249</td>
<td></td>
</tr>
</tbody>
</table>

- Reduce systematic uncertainties by 20-40% more than ND280 current
- Work is ongoing on ν_e ($\bar{\nu}_e$) interaction studies
Conclusions

• T2K Near Detector upgrade launched as official T2K project
 - improvement of Near Detector toward T2K-II (and Hyper-K)
 - Expression of Interest in January 2017: CERN SPSC-EOI-015
 - signed by ~190 physicists (aims to be part of the CERN neutrino platform)
• Plan for the T2K near detector upgrade
 - end of 2017: technical design and submit the proposal to SPSC
 - 2017-2018: prototypes of TPCs, scint. detectors in testbeam
 - 2019-2020: production, integration at CERN, system test
 - 2021: shipment to Japan, installation, commissioning
• R&D of a High Pressure TPC as a detector to explore the details of neutrino interactions
• Already 3 open workshops since November 2016
• Next open workshop at CERN Aug. 1-2: https://indico.cern.ch/event/644360/
 New members are already joining and more are welcome
BACKUP
Prospects for the future: T2K-II

- Expect to reach the approved T2K statistics (7.8×10^{21} POT) around 2021
- **T2K-II phase**: proposed to extend T2K run to 20×10^{21} POT by 2025 (Stage-I status at summer 2016 JPARC PAC)
- Plan to gradually increase the beam intensity up to ~ 1 MW in 2021
- Demonstrated 3.41×10^{13} protons per beam operation \rightarrow 1MW equivalent

Excluding CP conservation hypothesis at more than 3σ if $\delta_{CP} \sim -\pi/2$ and NH

We need to reduce the systematic uncertainties
- 30 GeV proton beam on 90 cm long graphite target
- ν_μ and $\bar{\nu}_\mu$ produced by pion and kaon decay:
 - $\pi^+ \rightarrow \mu^+ + \nu_\mu$
 - $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$
- Invert magnet polarity to produce a $\bar{\nu}_\mu$ beam
- First off-axis neutrino beam experiment (2.5°)
 - narrow spectrum peaked at 0.6 GeV, on the expected oscillation maximum
Prospects for the future: T2K-II

• Expect to reach the approved T2K statistics (7.8x10^{21} POT) around 2021

• **T2K-II phase**: proposed to extend T2K run to 20x10^{21} POT by 2025 (Stage-I status at summer JPARC PAC)

• Plan to gradually increase the beam intensity up to ~1 MW in 2021

• Aiming for >1 MW intensity for 2021 and 1.3 MW in ~2026: accelerator and beam-line upgrade is needed

• Demonstrated 3.41x10^{13} protons per beam operation → 1MW equivalent

arXiv:1609.04111
The ND280 TPCs

- Gas mixture is Ar:CF$_4$:iC$_4$H$_{10}$ (95:3:2)
- Two gas volumes: CO$_2$ as insulator
- 12 Micromegas modules:
 - 9m2 surface covered
 - 70mm2 pad segmentation

- Performances:
 - 0.7mm space resolution
 - 9% momentum resolution @1GeV
 - 7.8% resolution in dEdx (MIP)

- Key role in the study of the neutrino interactions: charge, momentum, PID
The ND280 Fine Grain Detector (FGD)

- XY extruded plastic scintillator bars coated with TiO$_2$ (0.25mm thickness)
- MPPC (S10362-13-050C) 1.3x1.3 mm2 (PDE@525nm 26-30%)
- About 30 photoelectrons per MIP crossing a bar
- FGD1 (15 XY scintillator layers) - FGD2 (7 XY scintillator + 6 water layers)
 - measure neutrino interactions both in water and plastic (~1.1 ton each)
- Limit: bad acceptance high-angle tracks

Kuraray Y11 double-clad fiber

NIM A 696 (2012) 1–31
The neutrino target detector

- Plastic scintillator structure: 4π acceptance

- Empty module drastically reduces the momentum threshold but $\sim 30\%$ mass
- Protons threshold down to ~ 300 MeV/c (close to Fermi momentum)
- Efficiency $>90\%$ over the full solid angle
Time of Flight detector

- Provide timing for good track reconstruction
- Improve particle Identification, e.g. separate e^+ from \sim1GeV protons

Extruded plastic scintillator

- 2 extruded plastic scintillators (20x0.7x270 cm3)
- 4 WLS Kurakay 1mm fibers glued in each slab
- 8 WLS fibers connected to the connector at each side
- Connector mounted directly on the scintillator
- Single 3x3mm2 MPPC at each end
- Expected time resolution is \sim630-650 ps

Several tests made at INR
Time of Flight detector

- Provide timing for good track reconstruction
- Improve particle Identification, e.g. separate e^+ from ~1GeV protons

Cast plastic scintillator

Bar size: $6\times1\times270\text{ cm}^3$

- Same as proposed for SHiP experiment
- Plastic material: EJ200(BC408) or EJ208(BC412)
 - Attenuation length ~4 m
 - 1.42 kg/bar
- 8 sensors of $6\times6\text{ mm}^2$
- σ_t at 50 cm is $\sim140\text{ ps}$. With 1 m long and double-end readout $\sigma_t\sim100\text{ ps}$
- Better time resolution but more expensive than extruded plastic scintillator
R&D for a High Pressure TPC

- High pressure gas filled with time projection chamber:
 - use the gas as neutrino interaction target
- Complementary to plastic scintillator detectors:
 - much less target mass but detect most of the particles

- Beam test: prototype of 1 m³ at 5 bar (CF4, Ar, Ne, CH4)
- Target is 2018 at CERN
- Measure proton-nucleus and pion-nucleus cross section
Preliminary EOI-15 Work Packages and Contact persons

Management: MZ and Masashi Yokoyama,
Contact with CERN: Alain Blondel

• WP1 Mechanical design and integration (Marcela Batkiewicz, Davide Sgalaberna)
• WP2 TPC field cage and gas vessel (Gabriella Catanesi, Emilio Radicioni)
• WP3 TPC Readout technology (Alain Delbart, CERN)
• WP4 TPC electronics and DAQ (Denis Calvet, Andrzej Rychter)
• WP5 Scintillator-based trackers (Japan+LLR)
• WP6 TOF system (Yury Kudenko)
• WP7 Gas system and calibration (Blair Jamieson, CERN)
• WP8 Test beam measurements (Federico Sanchez, Stefania Bordoni)
• WP9 High Pressure TPC (Asher Kaboth, Morgan Wascko)
• WP9 Simulation and optimization studies (Davide Sgalaberna)
• WP10 Physics studies (Sara Bolognesi, Claudio Giganti)
• WP11 DAQ (Giles Barr)
• WP12 Software (Yoshi Uchida)