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Proposed e*e” linear collider

e CERN existing LHC
Potential underground siting:
CLIC 380 GeV

e Two beam acceleration scheme I Gt
» High acceleration gradient (100 MV/m)

Jura Mountains

« Staged construction up to 3 TeV
— High precision physics
— Higgs, top, BSM
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« 20ms ~ 1 hard interaction per bunch train

Not to scale

Low duty cycle >power pulsing

High luminosity
Very small bunch size at IP

Very strong electromagnetic field from opposite

beam > Beamstrahlung

* Coherent and trident e*e pairs very forward

* Contribution from incoherent e*e- pairs (3x10°

<> 0, 40/1 nm

c,: 44 um
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* Main background in calorimeters and tracker 10_2; ]
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Forward WW, no background

with background in reconstuction
time window ~1.2 TeV after timing and p cuts: ~ 100 GeV remain
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% Return yoke and muon chambers

4T solenoid (R,, = 3.4 m)

Fine grain calorimeters (HCAL)
and (ECAL) for particle flow
reconstuction

Forward EM Calorimeters
(LumiCal & BeamCal)

12.8 m

Ultra light Tracker and Vertex

Power pulsed operation (switch
ﬁ off between bunch trains)
Trigger less readout

Final focusing magnet CLICdp-Note-2017-001
outside of detector
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 CLICHet physics requiremenss "

Vertex: excellent identification of ECAL: excellent photon resolution below
secondary vertices for b/c-tagging - 1% for photons at 1.5 TeV

excellent impact parameter resolution
Calorimeters (ECAL+HCAL): Excellent

Tracker: excellent momentum resolution jet energy resolution O(10-1500 GeV)

for high p; tracks | | oE
(> 100 GeV), e.g. for Higgs couplings to = " 5—3.5%
muons

2 -5 -1
~2x 107 GeV
Tprl PT © Allows separation of W and Z masses in

O(10) better than LHC experiments dijets w e
10 T E — =1% ]
% oA pT)/p: ) - —g:;//m =;.g% ]
O —10°GeV"' > 6 — 0 /m=5% -
8103 —10° GeV" © i — 0, /m=10% ]
S —10" GeV"' = I ]
g —10%GeV' ° 4 7
<<
w -
£10° I
q>) L
| 2 ]
10 §
I "IM‘ " 0 | SN .
7 I I L 60 70 80 90 100 110 120
116 118 120 122 124 Mass [GeV]
Di-muon invariant mass [GeV]
Detectors and data handling session 6 Matthias Weber

EPS-HEP 2017, July 8 CERN



@

3 double Vertex layers with spiral geometry to allow air flow for cooling + power pulsing

 Ultra light and ultra-thin (0.2%X, per detection layer, 10x less than CMS) with
25x25um? pixels (24x finer than CMS) - achieve single point resolution of 3 um

Very light tracker with 1-1.5 % X, per layer, liquid cooling

Elongated pixels/short strips so achieve single point resolution of 7 um, occupancies from

beam-beam interactions define readout granularity with 1-10 mm maximum strip length

Flavor tagging performance
Dijets at 200 GeV
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ECAL optimised to for best performance in = E . 1
LUl o 17+8 layers .
isolated photon energy resolution T b ooovomyers |
* Test several configuration of absorber layer el N | 30tayers ]
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HCAL optimization using jet observables
* Tungsten and steel show a similar performance

- use steel

as absorber

* Reduce inner HCAL endcap radius from 36 to

24 cm

Small calorimeter cell size to minimize confusion

ECAL cell size:

5x5mm?2

~ 20x finer than CMS

—> crystal front face 22x22cm (EB)
HCAL cell size: 30x30mm?
- A(pXAn O 087x0.087

~ 3000x finer than CMS
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Vertex-detector requirements: CLICpix with 50 um sensor

 Ultra-thin (50 um active silicon)

 High spatial resolution (~3 um > ~25x25 pum?
pitch)

* Precise timing (~10 ns)

* Broad R&D program on sensors, readout, powering,
interconnects, mechanical integration and cooling

* Beam tests of 65 nm readout ASICs with ultra-thin
fine-pitch active-edge and HV-CMOS sensors

* Prototypes of Light-weight mechanical supports
and air cooling

 Second generation of sensors and r/o ASICs with
improved performance currently under test

* Most challenging: position-resolution target

1:1 scale air cooling thermal test setup
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Tracker requirements:
* Material budget 1-1.5% X0 / layer August 2016 test-beam setup in SPS-H6
* Spatial resolution ~7 pum g
* fast timing (~10 ns)
 Has to cover ~100 m? surface area
—> integrated sensors w. large pixels (< 30 um x 1 mm)

* Evaluating prototypes in different technologies:
SOI; depleted monolithic CMOS

* Collaboration with HL-LHC tracker upgrade projects

* Most challenging: maintain efficiency and good timing,
despite large pixel area

* Mechanical integration and cooling concept for full tracker
* Prototypes for support frames constructed

Prototype of outer barrel tracker support structure
e TN I\ N i
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ECAL/HCAL R&D for CLIC performed within the CALICE collaboration with a comprehensive
comparison of various technologies
Silicon-Tungsten ECAL
 Finalizing analysis of 15 generation prototypes, 2" generation under construction with improved r/o
technologies
Scintillator sampling analogue HCAL with high granularity, optimized for PFA reconstruction
e easy mass assembly: SiPM-on-tile technology

* integrated readout electronics
« scalable to linear collider detector
Recent developments:
 Construction and testing of large 2" generation prototypes
» larger ~1m? prototypes under construction with low noise low cross-talk SiPM

good single particle energy resolution, 3 GeV electron hits in

improved by software compensation (SC) SiW ECAL
techniques -
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Forward calorimetry R&D for CLIC performed

within the FCAL collaboration

* LumiCAL for measurement of luminosity

(to a few permille as goal)

* BeamCAL for very forward e or y tagging

* Evaluating different r/o technologies

* Radiation hardness
 Beam tests

LumiCAL prototype
5 GeV electron test beam

AN AN :&\\\ A
0 2 4 8 10 12
layer

YOKE
ENDCAP

BPM on outgoing beam

40-100 mrad

ENDCAP
LumiCAL test beam prototype

LumiCAL module

FCAL talk #1023 by I. Levy
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The CLIC accelerator provides a unique potential for precision measurements and
potential of new discoveries at the TeV scale

New post CDR CLIC detector model CLICdet i1s proposed, optimised to achieve
highest precision over a center of mass energy range from a few hundred GeV up to 3
TeV in a challenging experimental environment

Broad efforts of ongoing R&D on detector technologies meeting the requirements for
linear colliders
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| CUCrdated conributionsackps "

* P. Skowronski: Lessons from CTF3 (talk #203, accelerator studies)

* J. Roberts: Energy-staging of the Compact Linear Collider (poster #443)

G. Milutinovic-Dumbelovic: Higgs and BSM physics at CLIC (talk #401)

M. Weber: Electroweak precision measurements at CLIC (poster #400)

N. van der Kolk: Toward Precision Top Quark Measurements in e+e- collisions (talk
#468)

G. Grenier: Technological Prototypes and Result Highlights of Highly Granular
(talk #779)

I. Levy: Measurement of shower development and its Moliere radius with a four-
plane LumiCal test set-up (talk #1023)
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. 446 klystrons
| Drive Beam ' circumferences | | | 20 MV\)/(, 48 ps
delay loop 73 m

CR1293 m drive beam accelerator

CR2439m

<

Y

2.5km
4 delay loop

@

decelerator, 4 sectors of 878 m

time delay line

BDS ™ BC2

e~ main linac, 12 GHz, 72 MV/m, 3.5 km e* main linac

Y

11 km

CR combiner ring

TA turnaround

DR damping ring

PDR predamping ring

BC bunch compressor
BDS beam delivery system
IP  interaction point

B dump

booster linac inB
2.86t0 9 GeV Main Beam

e~ injector
2.86 GeV

e* injector
2.86 GeV
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2013 - 2019 Development Phase 2020 - 2025 Preparation Phase

Development of a Project Plan for a Finalisation of implementation

staged CLIC implementation in line with parameters, preparation for industrial

LHC results; technical developments with procurement, Drive Beam Facility and

industry, performance studies for other system verifications, Technical

accelerator parts and systems, detector Proposal of the experiment, site

technology demonstrators authorisation
2019 - 2020 Decisions 2025 Construction Start 2035 First Beams
Update of the European Strategy for Ready for construction; Getting ready for data taking by
Particle Physics; decision towards a next start of excavations the time the LHC programme
CERN project at the energy frontier reaches completion

(e.g. CLIC, FCC)

qb Compact Linear Collider
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Steel HCAL

Steel - HCAL

Former CDR models of CLIC inspired by ILC detectors (CLIC_SID and CLIC ILD)
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| CLICinmer detector requirements "

Vertex detector physics aim: excellent identification of secondary vertices for b/c-
tagging > excellent impact parameter resolution

o(do) = 5@ 15/ (p|GeV]sin2 0) um
Affected by single point Affected by multiple scattering

resolution = 3um = 0.2% X, by detection layer

Tracker detector physics aim: excellent momentum resolution for high p tracks
(> 100 GeV), e.g. for Higgs couplings to muons

T /p% ~ 2% 1073 GeV-~! O(10) betf;r than LH(? experiments
> LA LA L L B BELELL N BN
.- olap)/p; 3
Poston——gpy.__opr 1 : U
esolution - . 10°
pr  B-L?2 /N+14 =
lg/[ult‘?pl.e OpT ~ 1 Xtot ‘%102
catterin :
° pr B-L VX @l
mmm) Large and light tracker with good single 39”
point resolution, high B Field Ly P yon
16 118 120 122 124
96R¢ ~Tnm, ~1-2%X, per layer Di-muon invariant mass [GeV]
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 CUICcalorimeter requirements "

Good Photon energy resolution O(10-1500 GeV)

60—
- CLICdp Vs=1.4TeV Hvv; H— yy

¢ signal 7
—gaussian fit

%E ~ 4 —0.4% Similar to ATLAS

Events /0.5 GeV
3
T

Excellent jet energy resolution O(10-1500 GeV) 2ol * :
OB 5 _ 350 ATLAS JER <~5% |~ H=YT™
E for ijet > 1 Tev S5 120 1 1w s

m(yy) [GeV]

mmm)  Allows separation of W and Z masses in dijets

Large Coverage

o [T "jl50
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S | 430
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<~ 30

e Tracker overall size and B field \z" o5
— Acceptance [0 >7° =2 |n|> 2.8 CZT 20

— B=4T = 15

— 4.4 m x 3 m tracker 10
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 Partideflowaalorimeters "

Classical approach Particle flow approach

Y\L*

Jt'l-

Ejer = Eccar * Encad Ejer = Errack +E, + E,

Typical jet composition: Always use the best info you have:
60% charged particles 60% =>tracker &% &%
30% photons 30% =>ECAL &%
10% neutrons 10% => HCAL =

Requires highly granular calorimeters to
resolve deposits from different particles and
sophisticated software to make correct

associations
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 Particle flowalgorithms: Pandora "

“The Pandora Software Development Kit for Pattern Recognition” - EPJC.75.439

-
B

I. Multiple tracks associated to single
] cluster — split cluster.

2. Cluster energy much greater than track
momentum — split cluster.

* Exploit calorimeter granularity to Energy of 2y in transverse plane
. . __—— to the direction of the flight
gradually build-up picture of events E

100 .

* More than 70 algorithms to address ! .
specific event topologies, with very
few mistakes, and to avoid accidental
merging of separate particles
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* CLICdp collaboration addresses detector and physics 1ssues for CLIC

* CERN acts as host laboratory

* Currently 29 institutes from 18 countries, ~180 members
http://clicdp.web.cern.ch/

* Close connection to ILC detector concepts, CALICE, FCAL, AIDA-2020
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Forward WW, no background after timing and p cuts: ~ 100 GeV remain:
| * Remove neutral hadrons with p; < 0.5 GeV

* Remove photons with p; <0.2 GeV

* For charged hadrons with p; <1 GeV, cut on
cluster time between -0.25 to 1 ns window (tof
corrected)

* For neutral hadrons with p; <8 GeV cut on
cluster time window of 0 to 2.5 ns

* For photons with py <4 GeV time window of 0
to 1 ns

—> Other particles accepted for default

reconstruction time window

with background in reconstuction
time window ~1.2 TeV

Detectors and data handling session 27 Matthias Weber
EPS-HEP 2017, July 8 CERN



