

ALICE forward rapidity upgrades

EPS Conference on High Energy Physics Venice, Italy 5-12 July 2017

Maciej Słupecki, University of Jyväskylä, Finland on behalf of the ALICE Collaboration

- LHC schedule
- Overview of ALICE upgrades
- Muon Forward Tracker (MFT)
 - Principle of operation
 - Design & layout
 - Simulated performance
- Fast Interaction Trigger (FIT)
 - Layout and geometry
 - Test results of the prototype detector module

Outline

- Simulated performance

LHC schedule

The LHC will enter the Long Shutdown 2 (LS2) in 2019 – in 16 months

- Increase in luminosity (number of collisions per s per cm²)
- Sustained p-p operation at 25 ns bunch crossing time
- Minimum-bias Pb-Pb at the target interaction rate of 50 kHz
 - (now <1 kHz; downgraded from available 8 kHz)

Overview of ALICE upgrades

8.07 (Sat) 10:00 by Christian Lippmann

Time Projection Chamber (TPC)

- New GEM technology for readout chambers
- Faster electronics & continuous readout

Data Acquisition (DAQ) / High Level Trigger (HLT)

- New architecture
- Online tracking and data compression
- 50 kHz Pb-Pb event rate

TOF, TRD -

- Faster readout

New Central Trigger Processor

New Trigger Detectors (FIT) - Cherenkov arrays and scintillator ring

8.07 (Sat) 9:45 by Paolo Camerini

New Inner Tracking System (ITS)

- Improved pointing precission
- Less material \rightarrow thinnest tracker @ LHC

Muon Forward Tracker (MFT)

- New Si tracker
- Improved muon vertex position

MUON ARM - Continuous readout electronics

Location of the forward upgrades in the vicinity of the interaction point

Muon Forward Tracker (MFT) Principle of operation (1/2)

Muon Forward Tracker (MFT) Principle of operation (2/2)

- Muon tracks are matched between the Muon Spectrometer and MFT
- MFT adds high pointing accuracy for muon tracks
 - Measurement of displaced vertex position
 → due to heavy flavour semi-muonic decays
 - Strong Lorentz boost effect at forward rapidity, even for $p_T = 0$
 - Measurement of **beauty** down to $p_T = 0$ from displaced J/ ψ vertices
 - Measurement of ψ(2S)

MFT design and layout

- **920** silicon pixel sensors (0.4 m²) on 280 ladders of 2 to 5 sensors each
- 10 Half-disks, 2 detection planes each •
 - Sensor type: ALPIDE \rightarrow O(25 mm x 25 mm)
 - See *The ALICE ITS upgrade* by Paolo Camerini (on 8.07 at 9:45) \rightarrow description of sensors
- Good matching efficiency between MFT and Muon Tracker

 $z = 0 \text{ mm} \rightarrow IP$

MFT doses: < 400 krad

- \rightarrow 10-fold safety margin
- Fast electronics readout capable of operating with:
 - Pb-Pb interaction rate ~50 kHz and
 - p-p interaction rate ~200 kHz

MFT performance

Why ALICE needs **Fast Interaction Trigger (FIT)?**

Geometry of FIT arrays Luminosity monitoring & feedback to LHC **FIT A-side** Essential for the operation of ALICE Fast Interaction Trigger Online Vertex determination Minimum Bias and centrality selection Rejection of beam/gas events Veto for Ultra Peripheral Collisions 30 cm **T0C+**: -3.3 ≤ η ≤ -2.2 Collision time for Time-Of-Flight particle ID **V0+**: 2.2 < n < 5.1 V0+ diameter: 148 cm Multiplicity
-> Centrality and Event Plane

T0A+: 3.8 ≤ η ≤ 5.4

Detector technology (1/2)

How to make **FIT fast**? \rightarrow **T0+**

- Cherenkov detector modules
- ΔT ~ 20 ps

- Adapter holding prisms for the laser calibration system
- 4 quartz radiators (26.5 x 26.5 x 20) mm³
- Photosensor: MCP-PMT
 PLANACON XP85012

How to make **FIT large**? \rightarrow **V0+**

- Sectored scintillator ring
- ΔT ~ 200 ps
- No wavelength shifting fibers

Real scale mock-up of one sector of V0+

Detector technology (2/2)

FIT = T0+ & V0+

Both elements must be well integrated with each other \rightarrow use the same readout electronics

- Adapter holding prisms for the laser calibration system
- 4 quartz radiators
 (26.5 x 26.5 x 20) mm³
- Photosensor: MCP-PMT PLANACON XP85012

No wavelength shifting fibers

Real scale mock-up of one sector of V0+

FIT prototype tests at ALICE (1/2) \rightarrow Cherenkov detector module (T0+)

14

Time resolution [ps]

07.2017

Importance of the V0+ scintillator ring Centrality and event plane

07.2017

Maciej Slupecki

16

Importance of the V0+ scintillator ring Simulated physics performance of FIT

Conclusions and outlook

- The R&D of the new forward detectors: MFT and FIT at ALICE is well advanced.
- The detector prototypes reach the operational parameters required at the LHC Run 3 on the laboratory test benches and in simulations.
- The components of both projects are undergoing an internal ALICE review process.
- The mechanical integration of inner parts of ALICE, including the beam pipe, ITS, MFT and FIT will be tested using the mock-up setup in September 2017.