The Mu2e Tracker and Calorimeter Systems

S. Giovannella (INFN LNF)

on behalf of the Mu2e Collaboration

Charge Lepton Flavour Violation

1S Orbit

Lifetime = 864ns

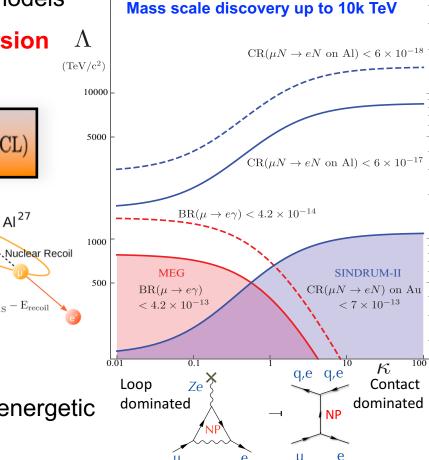
 $E_{\rm e} = m_{\mu}c^2 - (B.E.)_{1S} - E_{\rm recoil}$

 $= 104.96 \, \text{MeV}$

CLFV strongly suppressed in Standard Model: BR ≤10⁻⁵⁰

its observation indicates

New Physics

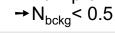

CLFV@Mu2e: coherent neutrinoless conversion of a muon to an electron in the field of

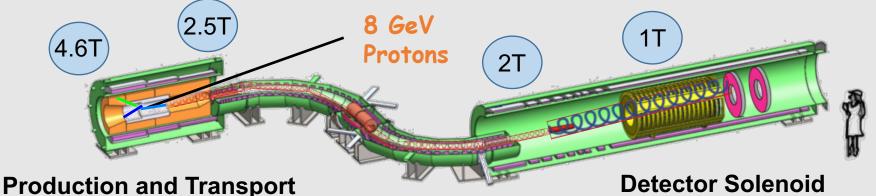
Goal: 10⁴ improvement w.r.t. previous conversion experiment (SINDRUM II)

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z)) \to e^- + N(A, Z)}{\Gamma(\mu^- + N(A, Z)) \to \text{ all muon capture}} \le 6 \times 10^{-17} \text{ (@90\%CL)}$$

Experimental technique:

- X Beam of low momentum muons
- X Muons stopped in Al target
- Muons trapped in orbit around the nucleus
- X Look for $\mu^-N(A,Z)$ → $e^-N(A,Z)$ events: mono-energetic e^- with $E \sim M_\mu$, produced with τ_μ^{Al} = 864 ns

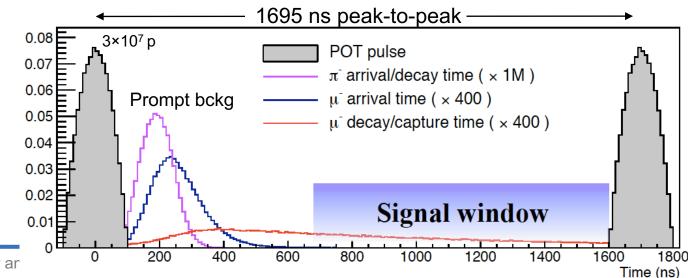



The Mu2e Experiment

SES @ 2.4×10⁻¹⁷ requires demanding detector technologies:

→ $10^{18} \mu$ stopped → 10^{20} p on target

in 3 years running

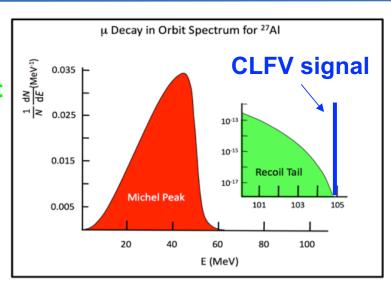

Production and Transport Solenoids

Production, selection and transport of low momentum muon beam

- Muon capture on Al target
- Tracker, EM Calorimeter
- Outside: Cosmic Ray Veto

Bunch structure:

- Pulsed proton beam and a delayed live gate to suppress prompt backgrounds
- Narrow proton pulses
- Out-of-time protons suppressed by O(10¹⁰)



The Tracker

One of two main bckg:

Decay In Orbit

 $\mu \rightarrow e \ v_{\mu} \ v_{e}$ (~39% on AI)

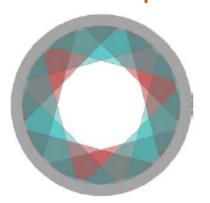
- X Nuclear modifications push DIO spectrum near conversion electron
- X DIO and CLFV signal, Conversion Electron (CE), overlap after energy loss and detector resolution

Detector requirements:

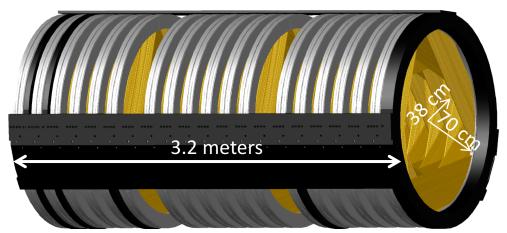
- 1. Small amount of X₀
- 2. σ_p < 180 keV @ 105 MeV
- 3. Good rate capability:
 - 20 kHz/cm² in live window
 - Beam flash of 3 MHz/cm²
- 4. dE/dx capability to distinguish e^-/p
- 5. Operate in B = 1 T, 10^{-4} Torr vacuum
- 6. Maximize/minimize acceptance for CE/DIO

Low mass straw drift tubes design:

- 5 mm diameter, 33 117 cm length
- 15 μm Mylar wall, 25 μm Au-plated W wire
- 80:20 Ar:CO₂ @ 1 atm
- Dual-ended readout

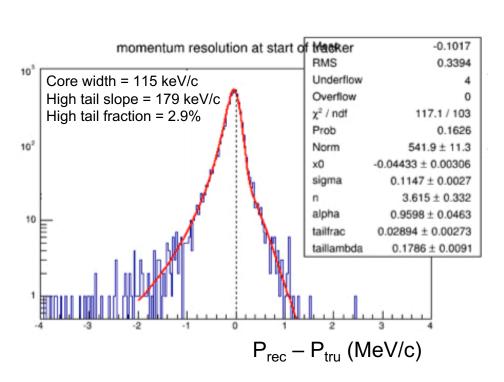

Tracker Design

- x > 20,000 tubes arranged in planes on stations
- Self-supporting panel consists of 2×48 straws, two staggered layers
- X 6 panels assembled into a plane, 2 planes assembled into a station, 18 stations
- X Rotation of panels and planes for stereo reconstruction

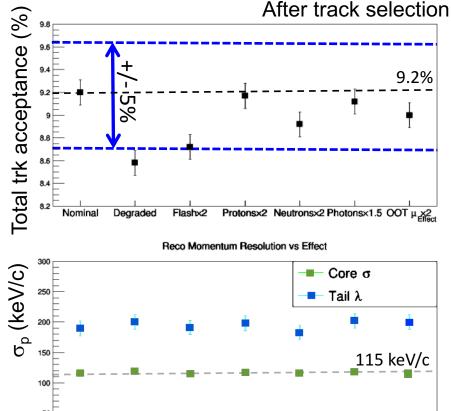

Tracker Plane

Tracker Station: 2 rotated planes

Tracker:18 stations

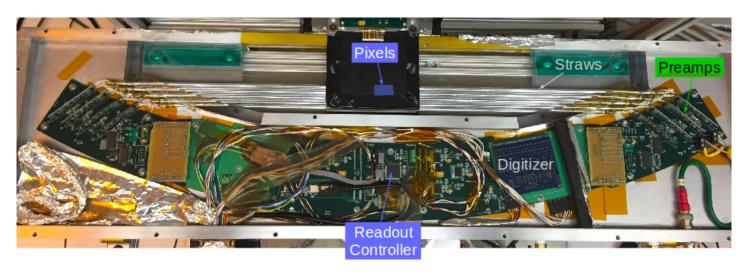


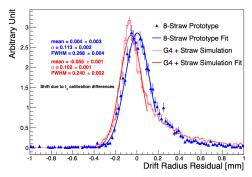

- X Inner 38 cm is purposely un-instrumented
 - Blind to beam flash (low momentum particles)
 - ➤ Blind to >99% of DIO spectrum

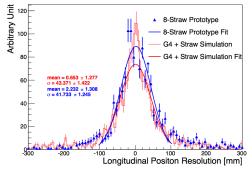

Tracker Performances

Expected tracker performances from full simulation

- X Robust against increases in rate
- Inefficiency dominated by geometric acceptance



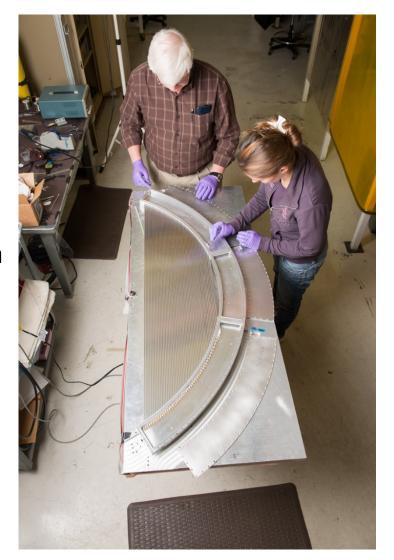



Mu2e Tracker: 8 channel prototype

Test with cosmics to measure gain, resolution...

Transverse Resolution (Data vs MC) $\sigma_{data} = 0.113 \pm 0.002 \text{ mm}$ $\sigma_{MC} = 0.102 \pm 0.001 \text{ mm}$

Longitudinal Resolution (Data vs MC) $\sigma_{data} = 42 \pm 1 \text{ mm}$ $\sigma_{MC} = 43 \pm 1 \text{ mm}$


Parameter	Value	Reference	
N electrons per ionization	< N >= 2	NIMA 301, 202(1991)	
Energy per ionization electron	39 eV	NIST (27-100 eV) and G4	
Avg. Straw Gain	70k	Prototype (PAM, ⁵⁵ Fe)	
Threshold Value	12 mV	Prototype (DVM, ⁵⁵ Fe)	
Threshold Noise	3 mV	Spice Sim. (V. Rusu)	
Shaping Time	22 ns	Prototype (⁵⁵ Fe)	

Panel Prototype

- X First pre-production prototype, with final design, recently built and being tested
- X Orders placed for final production
- **X** FEE prototypes tested successfully
- X Vertical slice test to be performed on fully instrumented panels with entire FEE chain

The Electromagnetic Calorimeter

Calorimeter provides confirmation for CE and other crucial functions:

- **X** PID: e/μ separation
- X EMC seeded track finder
- X Standalone trigger

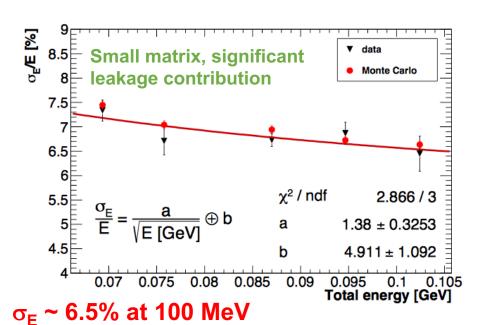
Requirements:

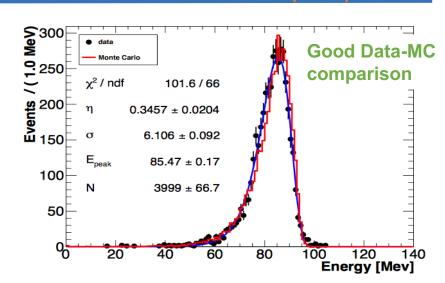
- $\sigma_{\text{F}}/\text{E} = \mathcal{O}(5\%)$ for CE
- σ_T < 500 ps for CE
- $\sigma_{XY} \le 1 \text{ cm}$
- High acceptance for CE

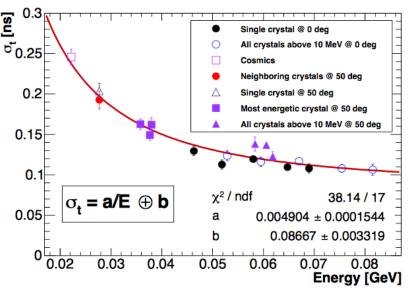
- Fast (τ<40 ns)
- Operate in 1T and 10⁻⁴ Torr
- Redundancy in readout
- Radiation hard: 90 krad photons and 3×10¹² n/cm²

EMC Design:

- X Two disks, R_{in}=374 mm, R_{out}=660 mm, 10X₀ length, ~ 75 cm separation
- X 674+674 square x-sec pure Csl crystals, (34×34×200) mm³
- X For each crystal, two custom array (2×3 of 6×6 mm²) large area UV-extended SiPMs
- X Analog FEE directly mounted on SiPM
- X Calibration/Monitoring with 6 MeV radioactive source and a laser system

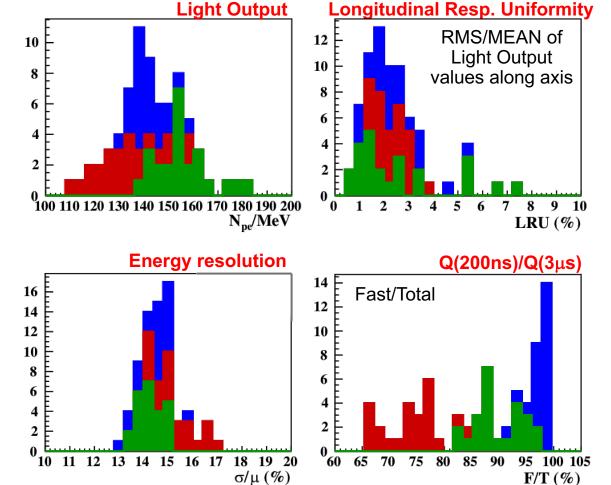

Disks spaced by $\frac{1}{2}\lambda$ of the helix (min-max distance from axis) for CE tracks

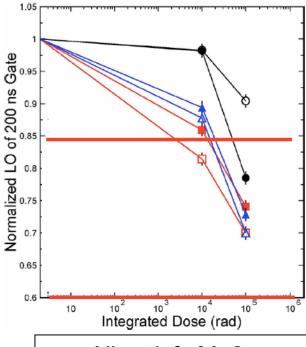



Calorimeter Performances

JINST 12 (2017) P05007

- Small prototype tested @ BTF (Frascati) in April 2015, 80–120 MeV e⁻
- X 3×3 array of (30×30×200) mm² undoped Csl crystals coupled to Hamamatsu MPPC
- X DAQ readout: 250 Msps CAEN V1720 Wave Form Digitizer




 $\sigma_T \sim 110 \text{ ps at } 100 \text{ MeV}$

Test of pre-production crystals

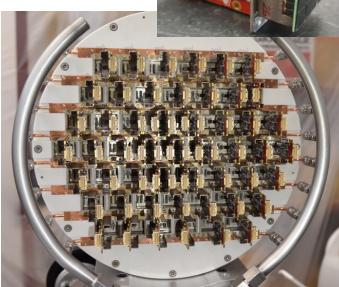
- x 3×24 pre-production crystals from three different vendors
- \boldsymbol{x} Optical properties tested with 511 keV γ 's along the crystal axis
- X Crystals are wrapped with 150 μm of Tyvek and coupled to an UV-extended PMT

Irradiation test up to 100 krad

All satisfy Mu2e 100 krad requirement (40% max. loss)

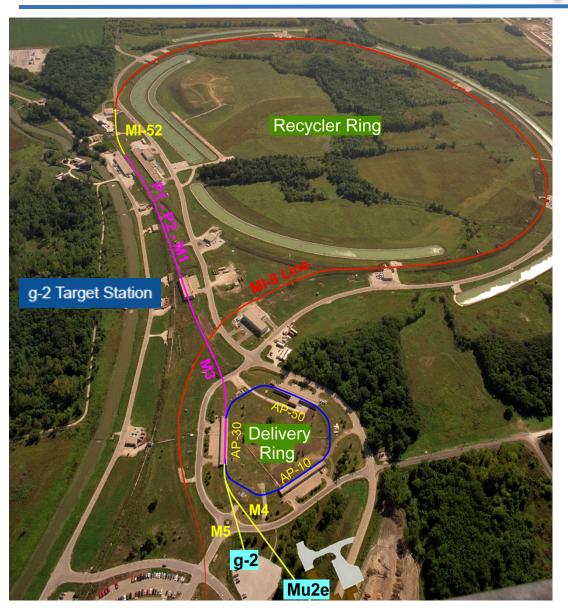
Test of pre-production SiPMs

- X 3×50 Mu2e pre-production SiPMs from three different vendors
- x 3×35 were characterized, all six cells in the array


Module 0

Large EMC prototype: 51 crystals, 102 SiPMs, 102 FEE boards Mechanics and cooling system similar to the final ones Goals:

- X Integration and assembly procedures
- X Work under vacuum, low temperature, irradiation env.
- χ Test beam with 60–120 MeV e^- done, analysis in progress



Conclusions

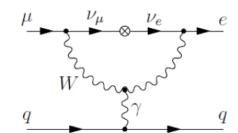
- X The Mu2e experiment will exploit the world's highest intensity muon beams of the Fermilab Muon Campus to search for CLFV, improving current sensitivity by a factor 10⁴
- X A low mass straw tube tracker and a pure CsI crystal calorimeter with SiPM readout have been selected to satisfy the demanding requirements
- X Both systems are concluding the prototyping phase
- X Production phase is starting, moving to full regime for end 2017
- X Detector installation in 2020, followed by Mu2e commissioning and data

Beam for Muon Campus

Recycler: fixed 8 GeV proton ring

Beams both to Muon Campus and neutrino experiments

Separate runs for g-2 and Mu2e

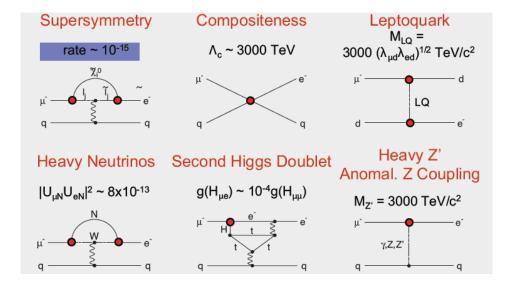

g-2: target before the delivery ring, 3.1 GeV π^+ selected, clean, polarized μ^+ beam

Mu2e: 8 GeV protons to Mu2e hall

Accelerator Readiness Review took place in March 2017

Beam commissioning for g-2 started beginning of April First $p/\pi/\mu$ beam in the ring in June (no target and del. ring)

CLFV

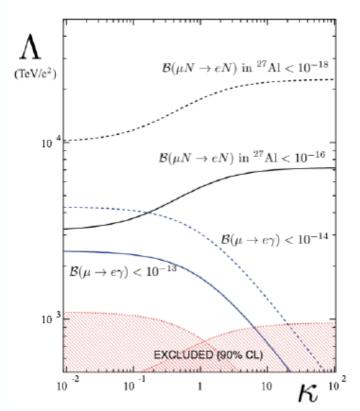


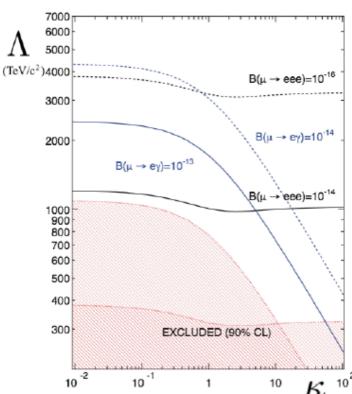
Standard Model $\mu \rightarrow e$ conversion

W. Altmannshofer, et al, arxiv:0909.1333 [hep-ph]

	AC	RVV2	AKM	$\delta { m LL}$	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$ au o \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \to e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

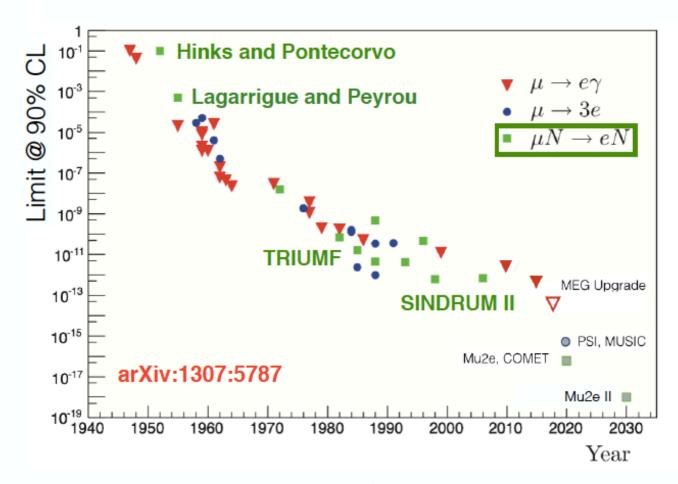
Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models ★★★ signals large effects, ★★ visible but small effects and ★ implies that the given model does not predict sizable effects in that observable.


If SUSY seen at LHC → rate ~10⁻¹⁵


Implies O(40) reconstructed signal events with negligible background in Mu2e for many SUSY models.

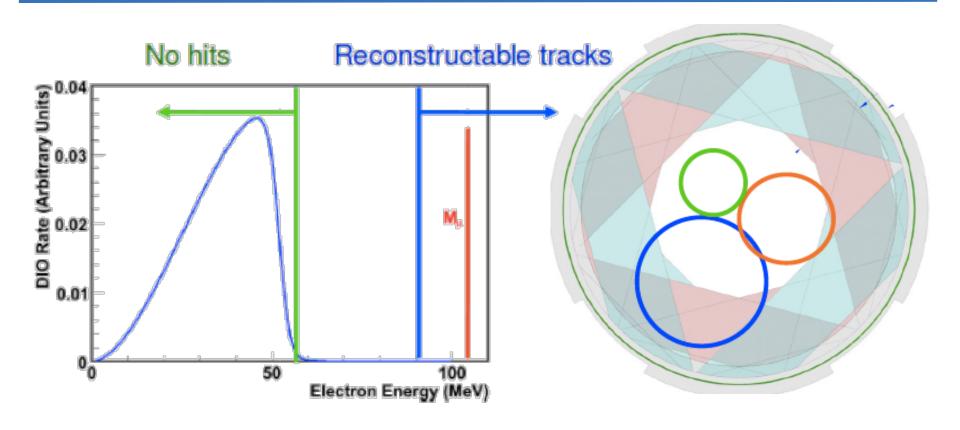
Mu2e keeps discovery sensitivity for all SUSY benchmark point for LHC Phase2

Model independent Lagrangian

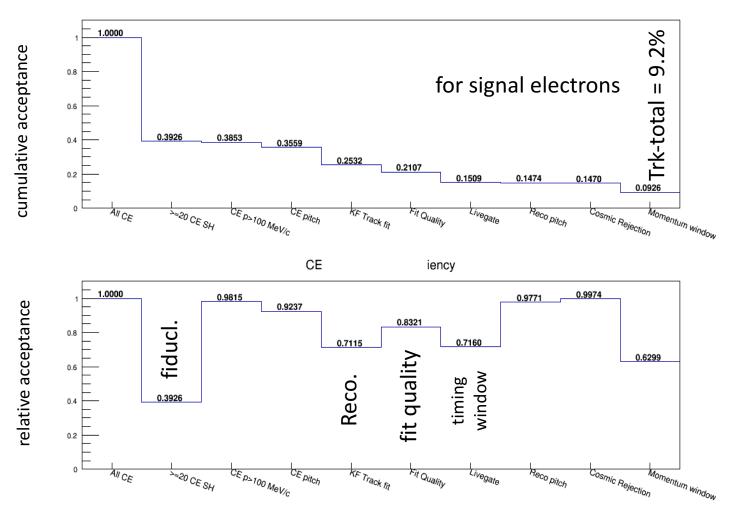

$$L_{\rm CLFV} = \frac{m_{\mu}}{(\kappa + 1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(\kappa + 1)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L \left(\bar{e}\gamma^{\mu}e\right)$$

"dipole term"

"contact term"



CLFV along the years


Mu2e will improve by a factor 10⁴ the present best limit!

DIO background

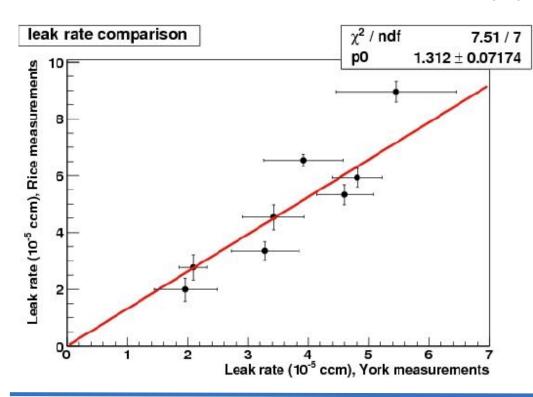
The tracker is blind to most of the DIO background

Track reconstruction and selection

Inefficiency
dominated
by
geometric
acceptance

After calorimeter PID and CRV deadtime, Total = 8.5%

Straw leak test

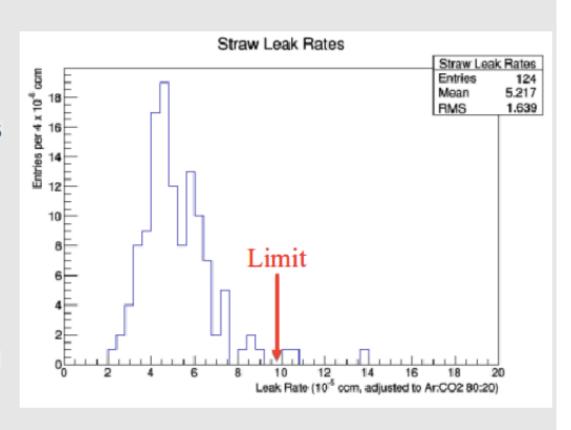

Two methods:

CO₂ permeation

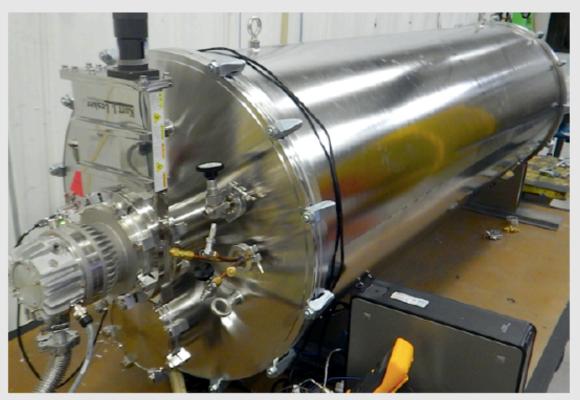
>100 straw/day: do every straw Needs cross calibration

Vacuum

Absolute measurement ~ 1 per day (sample of straw

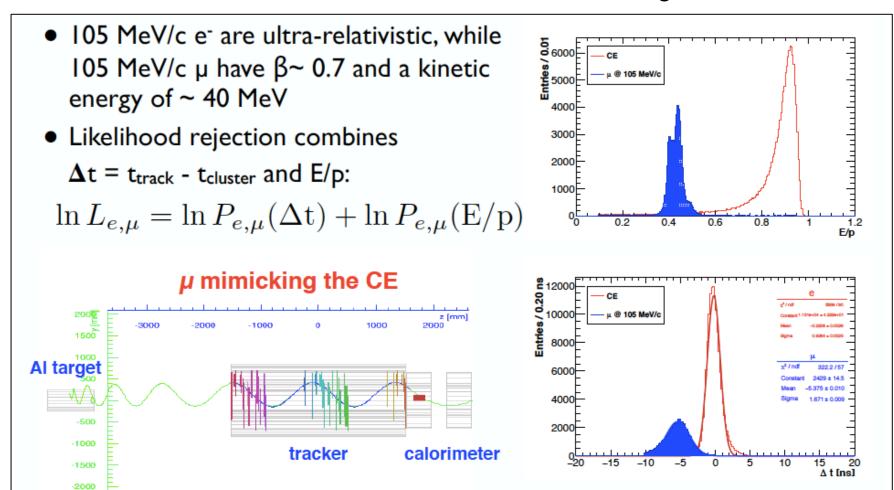


Agrees within uncertainty in correcting for difference in diffusion of Argon vs CO₂


Straw leak test

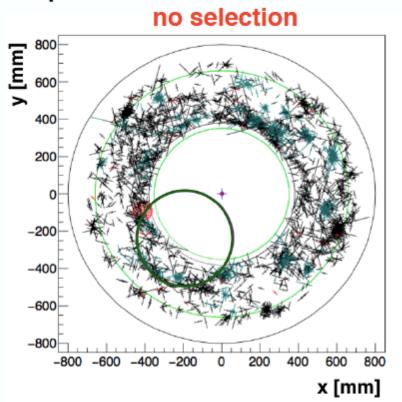
- The full tracker leak rate limit is 6 cm³/min.
 - many possible sources
 - individual straw leak limit is 9.6 x 10⁻⁵ cm³/ min
 - 124 straws tested at FNAL last summer;121 passed

Panel leak test

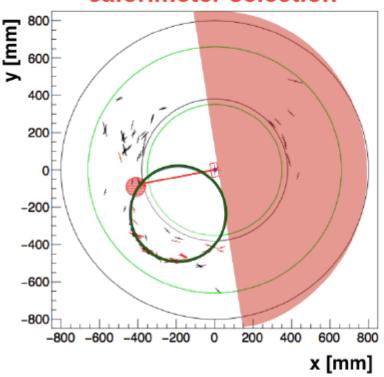

Large vacuum vessel to test 6 panels per day

Calorimeter: e/µ separation

With a CRV inefficiency of 10⁻⁴ an additional rejection factor of ~ 200 is needed to have < 0.1 fake events from cosmics in the signal window

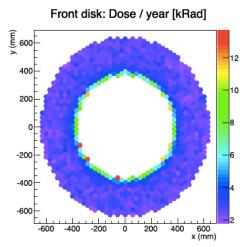


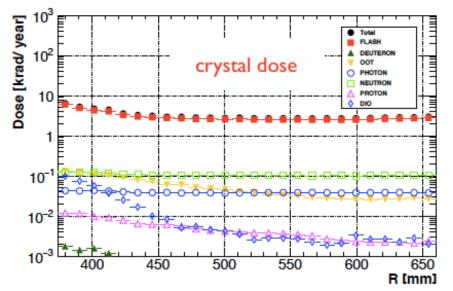
A rejection factor of 200 can be achieved with ~ 95% efficiency for CE

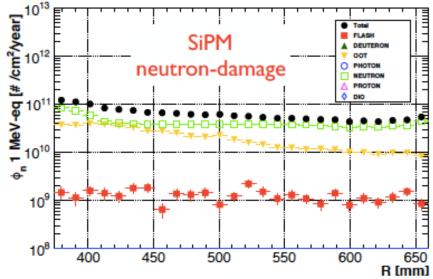


Calorimeter seeded track finder

- Cluster time and position are used for filtering the straw hits:
 - √time window of ~80 ns
 - √ spatial correlation

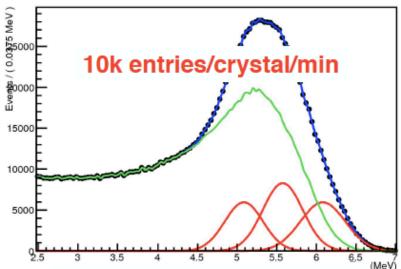



black crosses = straw hits, red circle = calorimeter cluster,
 green line = CE track

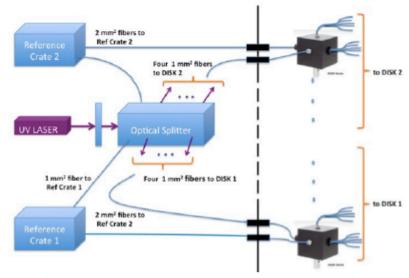


Calorimeter radiation damage

- Calorimeter radiation dose driven by beam flash (interaction of proton beam on target)
- Dose from muon capture is x10 smaller
- Dose is mainly in the inner radius
- Highest dose ~10 krad/year
- Highest n flux on crystals ~ 2×10¹¹ n/cm²/year
- Highest n flux on SiPM ~ 10^{11} n_{1MeVeq}/cm²/year


Qualify crystals up to ~ 100 krad, 10¹² n/cm² This includes a safety factor Qualify SiPM up to $\sim 10^{12} \text{ n}_{1\text{MeVeg}}/\text{cm}^2$

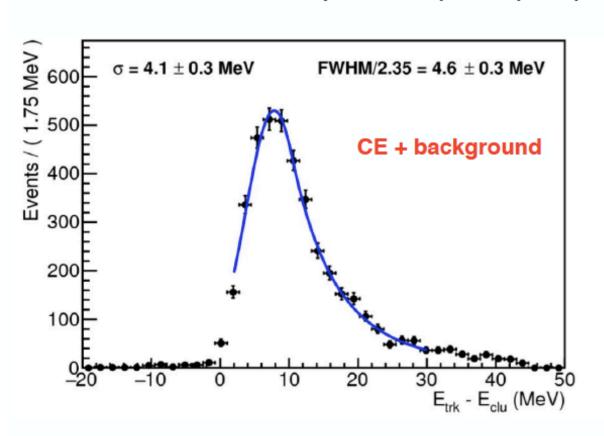
of 3 for a 3 year run


Calorimeter calibration

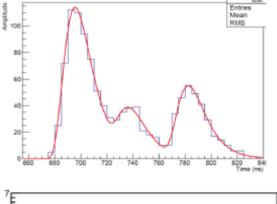
- Liquid source FC 770 + DT generator: 6 MeV + 2 escape peaks
- Laser system to monitor SiPM performance

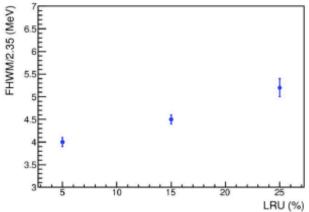
Liquid source prototype

Laser system - test station



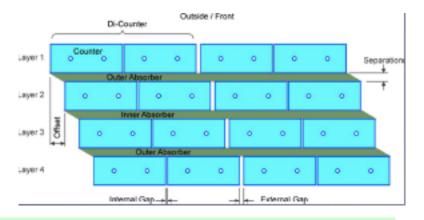
 $^{19}F + n \rightarrow ^{16}N + \alpha$ $^{16}N \rightarrow ^{16}O^* + \beta \quad t_{1/2} = 7 \text{ s}$ $^{16}O^* \rightarrow ^{16}O + \alpha(6.13 \text{ MeV})$




Calorimeter simulation

- Offline simulation including background hits
- Experimental effects included: longitudinal response uniformity (LRU), electronic noise, digitization, etc
- Waveform-based analysis to improve pileup separation

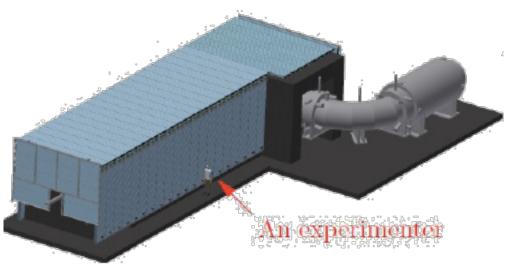
pile-up separation



Cosmic Ray Veto

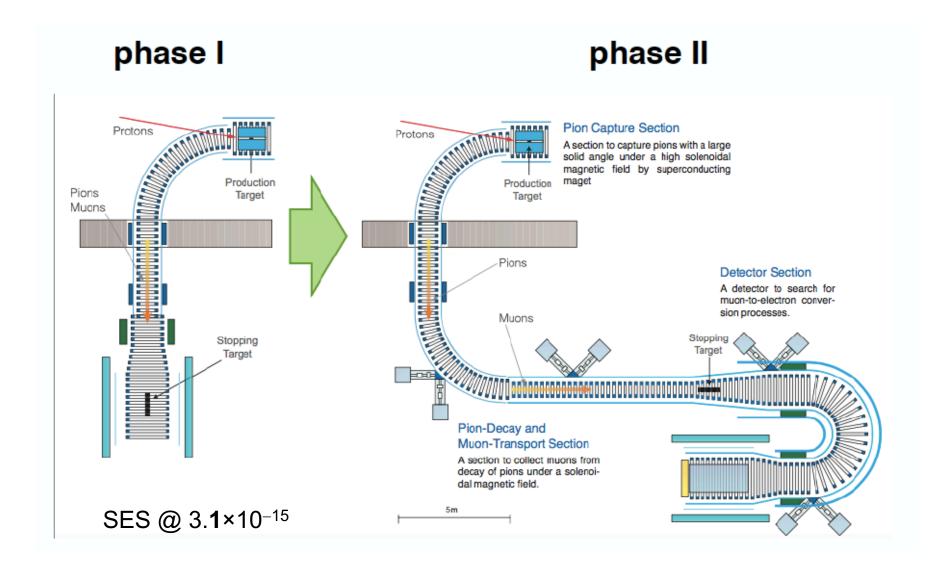
Cosmic ray muons will produce one fake signal event per day without a CRV. The muon itself can fake a 105 MeV e^- or it can knock out an e^- from material in the detector (delta ray), which can fake the signal

→ Passive shielding + PID trk/EMC + CRV



Nbkg (cosmics): 0.05 (3 years run)

- CR veto inefficiency = 10⁻⁴
- ε_{CRV} = 99.99%
- $\varepsilon_{\text{CRVplane}} = 99.6\%$ (14 pe/MeV for longest module)
- Thr @ 0.5-1 MeV to reduce n/γ, avoiding dead time (m.i.p. 2 MeV/cm)
- ¾ layers hit: 125 ns veto



- Four layers of extruded plastic scintillator, (5×2) cm²
- WLS fiber + SiPM readout

The COMET Experiment

