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Motivation
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Motivation

innermost layers → highest radiation damage (100MHz/cm2 to 200MHz/cm2)
current detector is designed to survive ∼12month in High-Luminosity LHC
→ R&D for more radiation hard detector designs and/or materials

Diamond as Detector Material:

properties
▶ radiation tolerance
▶ isolating material
▶ high charge carrier mobility
▶ smaller signal than in silicon

investigation of the signal independence/dependence on incident particle flux in
various detector designs:

▶ pad → full diamond as single cell readout
▶ pixel → diamond sensor on pixel chips
▶ 3D → strip/pixel detector with clever design to reduce drift distance
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Section 2

Diamond Types
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Diamond Types

diamonds artificially grown with chemical vapour deposition (CVD)
investigation of two different diamond types:

(a) single-crystalline CVD (b) poly-crystalline CVD (courtesy of E6)

only small sizes (∼0.25 cm2) large wafers (5 ′′ to 6 ′′ �)

pCVD signals smaller than scCVD (1:2) in planar configuration
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Section 3

Radiation Tolerance
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Setup

Devices

(a) strip metalisation pattern (b) mounted diamond with amplifier

patterning the diamonds → create pad, strip and pixel devices

metalisation on both sides → almost edgeless

segmentation critical for radiation studies → charge & position
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Setup

Schematic Beam Test Setup

characterisation of irradiated devices in beam tests

transparent or unbiased hit predictions from telescope

M. Reichmann ( ) Diamond Detectors 7th July 2017 6 / 27



Motivation Diamond Types Radiation Tolerance Diamond Devices in Experiments Rate Studies 3D Detector Development Conclusion

Results

Irradiation at CERN PS with 24 GeV protons

damage equation:

n = n0 + kϕ
1

mfp = 1
mfp0

+ kϕ

n0 − initial number of traps
mfp0 − initial mean free path

k − damage constant
ϕ − fluence

assume same mean free path for electrons and holes
results up to 2.2 × 1016 p/cm2 (∼500Mrad)
same damage curves and constant (k) for scCVD and pCVD diamonds
larger mfp0 performs better at any fluence
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Results

Charge Collection Distance (ccd) vs. Mean Free Path (mfp)

ccd = average distance between electron and hole until trapped
for scCVD: ccd ∼ thickness, for pCVD: ccd < thickness
ccd direct measurement (no correction)
mfp correct theory → correct data with assumptions (i. a. mfpe = mfph)

equation for ccd:
ccd
t =

∑
i

mfpi
t

(
1 − mfpi

t

(
1 − e− t

mfpi

))
t − thickness
i − electrons & holes
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Results

Summary of Proton, Neutron and Pion Irradiation

(a) irradiation at LANL with 800 MeV
protons (up to 1.4 × 1016 p/cm2)

Particle Energy Relative k
Proton 24GeV 1.0

800MeV 1.79 ± 0.13
70MeV 2.4 ± 0.4
25MeV 4.5 ± 0.6

Neutron 1MeV 4.5 ± 0.5
Pion 200MeV 2.5 − 3

(b) summary
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Section 4

Diamond Devices in Experiments
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Diamond Devices in Experiments

beam condition/loss monitors
▶ essential in all modern collider experiments

current generation pixel detectors
▶ ATLAS Diamond Beam Monitor (DBM)

future HL-LHC trackers
▶ 3D diamond detectors

future beam condition/luminosity monitor
▶ multipad design BCM’
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ATLAS DBM

ATLAS DBM

diamond pixel detectors in ATLAS (tracking)
total production of 45 diamonds (t = 500 µm) on FE-I4b chips
module assembly at CERN
installed during LS1
8 telescopes (2 Si & 6 Diamond) symmetric around ATLAS IP
thresholds tuned to ∼2500 e

(a) cable, detectors, telescopes (b) 4 mounted telescopes
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ATLAS DBM

Tracking

reconstruction of tracks from hits of 3 modules

(a) longitudinal distance to IP (b) radial distance to IP

plots with initial alignment
clear discrimination between background and collisions
loss of modules (Si/D)

▶ successful re-commissioning of surviving modules
diamond and Si modules now part of ATLAS data taking
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Section 5

Rate Studies
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pCVD Diamond Pad Detectors

Setup

rate studies conducted with 260MeV/c π+ at Paul Scherrer Institute (PSI)
tunable particle fluxes from O

(
1 kHz/cm2) to O

(
10MHz/cm2)

detectors tested in ETHZ beam telescope (based on CMS-Pixel-Chips)

4 tracking planes with particle trigger
scintillator for precise trigger timing → O (1 ns)
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pCVD Diamond Pad Detectors

Pad Detectors

(a) fast amplifier box (b) diamond and fast amp

diamonds in custom built amplifier boxes from Ohio State University (OSU)
cleaning, photo-lithography and Cr-Au metallisation at OSU
low noise, fast amplifier with O (5ns) rise time
prototype for HL-LHC BCM/BLM
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pCVD Diamond Pad Detectors

Waveforms
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fast amplifier and good timing resolution → resolve bunch structure of PSI beam
bunch spacing of 19.8 ns clearly visible
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pCVD Diamond Pad Detectors

Results

no rate dependence observed in pCVD diamonds up to 10MHz/cm2

no absolute pulse height and noise calibration yet
extending radiation doses to 1 × 1016 n/cm2
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Section 6

3D Detector Development
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3D Diamond Detectors

Detector Concept

after large irradiation → all detector materials trap limited (mfp < 75 µm)
keep drift distances smaller than mean free path

(a) planar detector (b) 3D detector

bias and readout electrode inside detector material
same thickness ∆ → same amount of induced charge → shorter drift distance L
electrode columns drilled with 800 nm femtosecond laser
convert diamond into resistive mixture of carbon phases
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3D Diamond Detectors

3D Multi Detector (2015)

pCVD diamond with 3D, phantom and strip detector on single sensor
3D column efficiency of 92%
3D cell size: 150 µm × 150 µm
signal read out as ganged cells

(a) metalisation pattern (b) photograph
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3D Diamond Detectors

3D Multi - Signal Map

square cells visible (9 broken cells)
signals in 3D already bigger by eye
phantom (no columns) → no pulse height
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3D Diamond Detectors

3D Multi - Result

measured signals for diamond thickness 500 µm:

Device Mean Charge [e] ccd [µm]
planar strip 6900 192

3D 13500 350 − 375*

*ccdeq - equivalent ccd to observe same charge in planar device
collect > 75 % charge in pCVD for the first time
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3D Diamond Detectors

Full 3D Detector (May/Sep 2016)

3 dramatic improvements compared to 3D Multi:
▶ an order of magnitude more cells: from 99 to 1188
▶ smaller cell size: 100 µm × 100 µm
▶ higher column efficiency: from 92 % to 99 %

(a) readout side (b) bias side
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3D Diamond Detectors

Full 3D Preliminary Results

analysis in progress
device seems to perform well
see charge in entire detector
largest charge collection in pCVD yet

▶ >85 % over contiguous region
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(b) charge distribution
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3D Diamond Detectors

3D Pixel Detector - Fabrication

cleaning and photo-lithography

connect to bias and readout with surface metallisation

bump and wire bonding

(a) pixel readout metalisation (b) final scheme
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3D Diamond Detectors

3D Pixel Detector

(a) detector bonded on CMS-Pixel-Chip (b) bias grid and R/O columns

successful production of a working 3D pixel detector
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3D Diamond Detectors

3D Pixel Detector - Preliminary Results

3D Diamond Pixel
→ 98.5 % Efficiency

efficiencies flat in time
pixel threshold: 1500 e
lower efficiency in diamond
probably due to due to low
field regions

Planar Silicon Pixel (Ref)
→ 99.3 % Efficiency
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(a) efficiency maps
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(b) hit efficiencies
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3D Diamond Detectors

3D Pixel Detector - New Design

currently producing 3500 cell pixel prototype with 50 µm pixel pitch
two independent drillings (Oxford - complete, Manchester - in progress)
bump bonding at Princeton (CMS) and IFAE (ATLAS)
CMS device probably ready for August beam tests
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Section 7

Conclusion
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Conclusion

impact of diamonds in LHC is increasing

one of the first pixel projects started taking data:
▶ ATLAS DBM re-commissioned for 13 TeV collisions

quantification and understanding of the rate effects in diamond
▶ pCVD shows no rate effect up to 10 MHz/cm2
▶ shown for fluence up to 5 × 1014 n/cm2

great progress in 3D detector prototypes
▶ 3D works in pCVD diamond; scale up and smaller cells also worked

production and successful test of 3D diamond pixel devices
▶ efficiency looks good; pulse height in progress
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