

Diamond Detector Technology: Status and Perspectives

EPS Conference (Venice, Italy)

Michael Reichmann

on behalf of the RD42 Collaboration

7th July 2017

M. Reichmann (ETH zürich)

Diamond Detectors

Table of contents

- Motivation
- 2 Diamond Types
- 8 Radiation Tolerance
- Oiamond Devices in Experiments
- 6 Rate Studies
- 6 3D Detector Development
- Conclusion

Motivation			

Motivation

Motivation				
Motiva	ation			

- $\bullet\,$ innermost layers $\rightarrow\,$ highest radiation damage (100 MHz/cm^2 to 200 MHz/cm^2)
- ullet current detector is designed to survive ${\sim}12\,month$ in High-Luminosity LHC
- $\bullet \rightarrow R\&D$ for more radiation hard detector designs and/or materials

Motivation				
Motiv	ation			

- $\bullet\,$ innermost layers $\rightarrow\,$ highest radiation damage (100 MHz/cm^2 to 200 MHz/cm^2)
- $\bullet\,$ current detector is designed to survive ${\sim}12\,{\rm month}$ in High-Luminosity LHC
- $\bullet \rightarrow R\&D$ for more radiation hard detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerance
 - isolating material
 - high charge carrier mobility
 - smaller signal than in silicon

Motivation			

Motivation

- innermost layers \rightarrow highest radiation damage (100 MHz/cm² to 200 MHz/cm²)
- $\bullet\,$ current detector is designed to survive ${\sim}12\,{\rm month}$ in High-Luminosity LHC
- $\bullet \rightarrow R\&D$ for more radiation hard detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerance
 - isolating material
 - high charge carrier mobility
 - smaller signal than in silicon
- investigation of the signal independence/dependence on incident particle flux in various detector designs:
 - ▶ pad \rightarrow full diamond as single cell readout
 - pixel \rightarrow diamond sensor on pixel chips
 - $\blacktriangleright~3D \rightarrow strip/pixel detector with clever design to reduce drift distance$

Diamond Types			

Diamond Types

Diamond Types			

Diamond Types

- diamonds artificially grown with chemical vapour deposition (CVD)
- investigation of two different diamond types:

(a) single-crystalline CVD

• only small sizes ($\sim 0.25 \, \text{cm}^2$)

- (b) poly-crystalline CVD (courtesy of E6)
 - large wafers (5 $^{\prime\prime}$ to 6 $^{\prime\prime}$ \varnothing)
- pCVD signals smaller than scCVD (1:2) in planar configuration

	Radiation Tolerance		

Radiation Tolerance

	Radiation Tolerance ●O ○○○		
Setup			

Devices

(a) strip metalisation pattern

(b) mounted diamond with amplifier

- $\bullet\,$ patterning the diamonds \rightarrow create pad, strip and pixel devices
- $\bullet\,$ metalisation on both sides $\rightarrow\,$ almost edgeless
- $\bullet\,$ segmentation critical for radiation studies $\rightarrow\,$ charge & position

	Radiation Tolerance		
	00 000		

Schematic Beam Test Setup

• characterisation of irradiated devices in beam tests

• transparent or unbiased hit predictions from telescope

	Radiation Tolerance		
	00 000		

Irradiation at CERN PS with 24 GeV protons

1000 mfp (µm) damage equation: 900 $n = n_0 + k\phi$ 800 700 $\frac{1}{\mathsf{mfp}} = \frac{1}{\mathsf{mfp}_0} + \mathsf{k}\varphi$ scCVD 600 pCVD 1 shifted by +3.5 pCVD 2 shifted by +3.6 500 400 n_0 — initial number of traps 300 mfp_0 – initial mean free path 200 100 k – damage constant 0 10 20 ϕ – fluence 15 proton fluence (10¹⁵ p/cm²)

- assume same mean free path for electrons and holes
- $\bullet\,$ results up to $2.2\times10^{16}\,p/cm^2$ (${\sim}500\,Mrad)$
- same damage curves and constant (k) for scCVD and pCVD diamonds
- larger mfp₀ performs better at any fluence

	Radiation Tolerance		
	00 000		

Charge Collection Distance (ccd) vs. Mean Free Path (mfp)

- ccd = average distance between electron and hole until trapped
- for scCVD: ccd \sim thickness, for pCVD: ccd < thickness
- ccd direct measurement (no correction)
- mfp correct theory \rightarrow correct data with assumptions (i. a. mfp_e = mfp_h)

	Radiation Tolerance		
	00		

Summary of Proton, Neutron and Pion Irradiation

(a) irradiation at LANL with 800 MeV protons (up to $1.4\times10^{16}\,\text{p/cm}^2)$

Particle	Energy	Relative k
Proton	24 GeV	1.0
	800 MeV	1.79 ± 0.13
	70 MeV	2.4 ± 0.4
	25 MeV	4.5 ± 0.6
Neutron	1 MeV	4.5 ± 0.5
Pion	200 MeV	2.5 - 3

(b) summary

	Diamond Devices in Experiments		

Diamond Devices in Experiments

	Diamond Devices in Experiments		

Diamond Devices in Experiments

- beam condition/loss monitors
 - essential in all modern collider experiments
- current generation pixel detectors
 - ATLAS Diamond Beam Monitor (DBM)
- future HL-LHC trackers
 - 3D diamond detectors
- future beam condition/luminosity monitor
 - multipad design BCM'

	Diamond Devices in Experiments		
	••		

ATLAS DBM

- diamond pixel detectors in ATLAS (tracking)
- \bullet total production of 45 diamonds (t = 500 $\mu m)$ on FE-I4b chips
- module assembly at CERN
- installed during LS1
- 8 telescopes (2 Si & 6 Diamond) symmetric around ATLAS IP
- $\bullet\,$ thresholds tuned to ${\sim}2500\,e$

(b) 4 mounted telescopes

		Diamond Devices in Experiments ○●		
ATLAS DBM	1			

Tracking

reconstruction of tracks from hits of 3 modules

(b) radial distance to IP

- plots with initial alignment
- clear discrimination between background and collisions
- loss of modules (Si/D)
 - successful re-commissioning of surviving modules
- diamond and Si modules now part of ATLAS data taking

		Rate Studies	

Rate Studies

		Rate Studies ●000	
pCVD Diamo			

Setup

- rate studies conducted with 260 MeV/c π^+ at Paul Scherrer Institute (PSI)
- \bullet tunable particle fluxes from $\mathcal{O}\left(1\,\text{kHz}/\text{cm}^2\right)$ to $\mathcal{O}\left(10\,\text{MHz}/\text{cm}^2\right)$
- detectors tested in ETHZ beam telescope (based on CMS-Pixel-Chips)

- 4 tracking planes with particle trigger
- ullet scintillator for precise trigger timing $\rightarrow \mathcal{O}\left(1\,\text{ns}\right)$

		Rate Studies 0000	
pCVD Diamo			

Pad Detectors

(a) fast amplifier box

(b) diamond and fast amp

- diamonds in custom built amplifier boxes from Ohio State University (OSU)
- cleaning, photo-lithography and Cr-Au metallisation at OSU
- $\bullet\,$ low noise, fast amplifier with $\mathcal{O}\,(5ns)$ rise time
- $\bullet\,$ prototype for HL-LHC BCM/BLM

		Rate Studies	
pCVD Diamon			

Waveforms

- $\bullet\,$ fast amplifier and good timing resolution \rightarrow resolve bunch structure of PSI beam
- bunch spacing of 19.8 ns clearly visible

		Rate Studies 000●	
pCVD Diamo			

Results

- $\bullet\,$ no rate dependence observed in pCVD diamonds up to $10\,\text{MHz/cm}^2$
- no absolute pulse height and noise calibration yet
- $\bullet\,$ extending radiation doses to $1\times 10^{16}\,n/cm^2$

		3D Detector Development	

3D Detector Development

		3D Detector Development •000000000	

Detector Concept

- \bullet after large irradiation \rightarrow all detector materials trap limited (mfp $<75\,\mu m)$
- keep drift distances smaller than mean free path

(a) planar detector

(b) 3D detector

- bias and readout electrode inside detector material
- $\bullet\,$ same thickness $\Delta \to$ same amount of induced charge \to shorter drift distance L
- electrode columns drilled with 800 nm femtosecond laser
- convert diamond into resistive mixture of carbon phases

			3D Detector Development	
3D Diamond	Detectors			

3D Multi Detector (2015)

- pCVD diamond with 3D, phantom and strip detector on single sensor
- 3D column efficiency of 92 %
- 3D cell size: 150 $\mu m \times 150 \, \mu m$
- signal read out as ganged cells

		3D Detector Development	

3D Multi - Signal Map

- square cells visible (9 broken cells)
- signals in 3D already bigger by eye
- \bullet phantom (no columns) \rightarrow no pulse height

		3D Detector Development	

3D Multi - Result

• measured signals for diamond thickness 500 µm:

Device	Mean Charge [e]	ccd [µm]
planar strip	6900	192
3D	13500	350 - 375*

• *ccd_{eq} - equivalent ccd to observe same charge in planar device

• collect > 75 % charge in pCVD for the first time

		3D Detector Development	

Full 3D Detector (May/Sep 2016)

- 3 dramatic improvements compared to 3D Multi:
 - an order of magnitude more cells: from 99 to 1188
 - smaller cell size: 100 μm × 100 μm
 - higher column efficiency: from 92% to 99%

(a) readout side

(b) bias side

			3D Detector Development	
3D Diamond				

Full 3D Preliminary Results

- analysis in progress
- device seems to perform well
- see charge in entire detector
- largest charge collection in pCVD yet
 - ► >85 % over contiguous region

M. Reichmann (ETHzürich)

		3D Detector Development	

3D Pixel Detector - Fabrication

- cleaning and photo-lithography
- connect to bias and readout with surface metallisation
- bump and wire bonding

		3D Detector Development	

3D Pixel Detector

(a) detector bonded on CMS-Pixel-Chip

(b) bias grid and R/O columns

successful production of a working 3D pixel detector

			3D Detector Development	
3D Diamond				

3D Pixel Detector - Preliminary Results

3D Diamond Pixel \rightarrow 98.5 % Efficiency

- efficiencies flat in time
- pixel threshold: 1500 e
- lower efficiency in diamond probably due to due to low field regions

Planar Silicon Pixel (Ref) \rightarrow 99.3% Efficiency

		3D Detector Development 000000000●	

3D Pixel Detector - New Design

- currently producing 3500 cell pixel prototype with 50 µm pixel pitch
- two independent drillings (Oxford complete, Manchester in progress)
- bump bonding at Princeton (CMS) and IFAE (ATLAS)
- CMS device probably ready for August beam tests

			Conclusion

Conclusion

			Conclusion
<u> </u>			

Conclusion

- impact of diamonds in LHC is increasing
- one of the first pixel projects started taking data:
 - ATLAS DBM re-commissioned for 13 TeV collisions
- quantification and understanding of the rate effects in diamond
 - pCVD shows no rate effect up to 10 MHz/cm²
 - shown for fluence up to $5 \times 10^{14} \text{ n/cm}^2$
- great progress in 3D detector prototypes
 - 3D works in pCVD diamond; scale up and smaller cells also worked
- production and successful test of 3D diamond pixel devices
 - efficiency looks good; pulse height in progress