

Radiation studies on resistive bulk-micromegas chambers at the CERN Gamma Irradiation Facility

B. Alvarez Gonzalez¹, J. Bortfeldt¹, M. T. Camerlingo²,
 E. Farina^{1,3}, P. lengo¹, L .Longo⁴, J. Samarati¹,
 O. Sidiropoulou^{1,5}, J. Wotschack¹

(1) CERN (2) Universita e INFN, Napoli (3) Universita e INFN, Pavia
(4) Universita del Salento (5) Julius-Maximilians-Universitat Warzburg

July 7th, 2017

- Introduction
- Gamma Irradiation Facility
- Towards HL-LHC
- MicroMegas set-up
- Results
- Conclusions

MicroMegas: Micro mesh gaseous structure

Introduction

 Study the detector behavior under high irradiation and long-term aging of resistive MicroMegas detectors

- Two resistive bulk-Micromegas detectors were installed in May 2015 at the CERN Gamma Irradiation Facility (GIF++)
- Those detectors were exposed to an intense gamma irradiation
- The desired accumulated charge of more than 0.2 C/cm² has been reached corresponding to 10 years of HL-LHC operation

Results after 2 years of irradiation will be presented

- Located in the north area of the SPS accelerator at CERN
- Flux of high energy photons (662 KeV) together with the availability of high energy charged particle beams
- ¹³⁷Cs ~14 TBq gamma source of irradiation, half-life of 30 years

^{137m}Ba emits gamma rays with a main photon peak at 662 keV

• Measurements and simulations (*Geant4*) of the **photon field** were provided and used as benchmarks for our measurements

Filter system permits the attenuation of the photon rate in several steps to reach attenuation factors of several orders of magnitude (~10⁴ - 10⁵)

		Measured data	
Nominal	Filter	Dose	Dose
Attenuation	Combination	Rate	Attenuation
		[mGy/h]	
1	A1 B1 C1	470.00	-
1.5	A1 B2 C1	400.00	1.2
2.2	A1 B1 C2	211.00	2.2
4.6	A1 B1 C3	105.00	4.5
10	A2 B1 C1	55.00	8.8
100	A3 B1 C1	6.50	72.3
100	A1 B3 C1	6.20	75.8
464	A1 B3 C3	1.59	295.6
4642	A2 B3 C3	0.22	2156.0
46415	A3 B3 C3	0.05	9400.0

• GIF++ Community: Projects foreseen for LHC Upgrades 2017 - Week 19

 The high source activity produces a very intense background gamma field allowing to accumulate doses equivalent to High Luminosity LHC experimental conditions in a reasonable time

Alvarez Gonzalez, Barbara (CERN) Radiation studies on MM chambers at GIF++

July 7th, 2017 6 / 21

High Luminosity LHC (HL-LHC)

- Resistive MicroMegas is a well established technology to be used with many applications
 - For example in ATLAS for the New Small Wheel (NSW) project
- ATLAS will replace the current two small wheels (CSC, MDT, TGC)

- Very high rate (15 kHz/cm²) at high luminosity (5x10³⁴ cm⁻²s⁻¹)
- Some irradiation tests in resistive MM were done in the past
- New studies:
 - Long-term irradiation
 - Measurements of the detector performance under high irradiation

*For more details about the NSW project, see Paolo lengo's talk: https://indico.cern.ch/event/466934/contributions/2590420/

Description of the MicroMegas used in GIF++

- Two resistive bulk-micromegas chambers (T5&T8) built @ CERN
 - Active area of 10x10 cm²
 - Single readout plane with strip pitch 400 μm and strip width 300 μm
 - Readout strips covered with a $50\mu m$ thick Kapton foil carrying high resistivity ($\sim 1M\Omega/sq$) carbon strips \rightarrow *spark protection*
 - The gas volume is divided in two by a metallic micro-mesh
 - Mesh consisting of 18 μm diameter wires with 64 μm pitch
 - Amplification gap of 128 μ m, drift gap of 5 mm

• These are gaseous particle detectors detecting particles by amplifying the charges that have been created by **ionisation** in the gas volume

Data-taking and Working Conditions

- Data acquired with APV-25 front-end ASICs and RD51 Scalable Readout System (SRS)
- Data-taking varying attenuation filters and amplification voltages
 - Att. Factors: 1, 2.2, 4.6, 10, ..., 100
 - Amplification Voltage Scan: 420-540 V
 - Drift Field: 600 V/cm
 - Source ON/OFF + Muon Beam
- Working conditions:
 - Gas: ArCO2 93%, 7%, Gas Flow: 5 l/h
 - Operating Gain: $\sim 5x10^3$

RESULTS

Integrated Charge

- Goal: to accumulate the equivalent integrated charge expected after 10 years of HL-LHC operation
- After ~2 years of exposure to an intense γ irradiation the desired accumulated charge of more than 0.2 C/cm² has been reached

Integrated Charge vs Time

Chambers exposed at GIF++ from May 2015 to June 2017

Detection Efficiency Measurements

Efficiency measured w.r.t reference detectors using muon tracks

- May 2015: muons from cosmic rays at the CERN RD51 GDD lab
- May 2017: GIF++ muon beam

- Both datasets reach full efficiency around 500 V
- Voltage was not corrected by *T*, *P* and *H*

No degradation of the efficiency observed due to irradiation

Alvarez Gonzalez, Barbara (CERN) Radiation studies on MM chambers at GIF++

Gain Measurements

Gain measurements were conducted on T5 and T8 chambers using an ⁵⁵Fe source in the *RD51 GDD lab* in May 2015 and 2017

Gain Measurement

Experimental set-up

 No significant changes on the gain are observed for any of the two chambers

No degradation of the gain observed due to irradiation

Current vs Voltage and Attenuation Factor

- Study the current as a function of the amplification voltage and attenuation factor
- Slight difference due to atmospheric conditions: T, P and H

- In April 2017, T8 was moved further from the source from 1 m to about 1.35 m
- The current difference follows:

$$I_1 * d_1^2 = I_2 * d_2^2$$
, if $d_2 > d_1 \to I_2 < I_1$

Current vs Voltage and Attenuation Factor

- Study the current as a function of the amplification voltage and attenuation factor
- Slight difference due to atmospheric conditions: T, P and H

- In April 2017, T8 was moved further from the source from 1 m to about 1.35 m
- The current difference follows:

$$I_1 * d_1^2 = I_2 * d_2^2$$
, if $d_2 > d_1 \to I_2 < I_1$

Current vs Voltage and Attenuation Factor – T5

July 7th, 2017 15 / 21

Current vs Voltage and Attenuation Factor – T8

Alvarez Gonzalez, Barbara (CERN) Radiation studies on MM chambers at GIF++

July 7th, 2017 16 / 21

Particle Rate and Detector Sensitivity

Particle rate as a function of the amplification voltage per att. factor

Nov 2016 data-taking, T5 and T8

Nov 2015 and 2016 data-takings, T8

- The detector sensitivity of ~3.8 x10⁻³ extracted from the measured particle rate from the fully efficient region @ 520 V and the photon observed rate at U1
- This agrees with the Geant4 simulations which include the resistive bulk-micromegas chambers

Geant4 Simulation

 Simulation including the bulk-micromegas detector design and the GIF++ source spectrum

Spectrum simulated for att. factor 10

As result the detector sensitivity, estimated as the number of γ depositing an energy more than 26 eV in the gas gap over the total number of generated γ, is about ~3.8 x10⁻³

Tracking with muon beam

Reminder: GIF++ $\rightarrow \gamma$ source + muon beam

- Muon tracks distinguished from photons using the *Hough transform*
- Cluster position difference between T5 and T8 fitted with a Gaussian:

- Tracking resolution stable up to 68 kHz/cm² (4 times more than the expected rate during the HL-LHC)
- The most probable value (MPV) of the cluster charge is also shown and is constant up to this very high photon flux

Conclusions

- The efficiency, gain, particle rate and tracking resolution measurements for two bulk-micromegas chambers have been presented
- After two years of irradiation at GIF++ with an accumulated charge of more than 0.2 C/cm² no aging effects have been observed in either of the two chambers
- Studies on the tracking resolution performed in November 2015 have been also shown, stable up to 68 kHz/cm²
 - These studies will be repeated for the full accumulated charge

• Activities at GIF++ continue:

- Irradiation of T5 and T8 chambers
- Irradiation and muon test beams for other MicroMegas prototypes

Acknowlogements:

- CERM GIF++ Community
- CERN RD51 GDD lab
- Nicholas Karastathis for the Geant Simulation

https://espace.cern.ch/test-RD51/RD51%20internal%20notes/RD51-NOTE-2015-011.pdf

THANK YOU

Alvarez Gonzalez, Barbara (CERN) Radiation studies on MM chambers at GIF++

BACK-UP SLIDES

References

- M. R.Jäkel et al., CERN GIF++, PoS (TIPP2014) 102
- D.Pfeiffer et al., "The radiation field in the Gamma Irradiation Facility GIF++ at CERN", arXiv:1611.00299v1
- T. Alexopoulos et al., A spark-resistant bulk-micromegas chamber for high-rate applications, Nucl. Instr. Meth. Phys. Res. A 640 (2011) 110-118
- M .Raymond et al., The APV25 0.25 l¹/₄m CMOS readout chip for the CMS tracker, IEEE Nucl. Sci. Symp. Conf. Rec. 2 (2000), 9/113
- S. Martoiu et al., Development of the scalable readout system for micro-pattern gas detectors and other applications, JINST 8 (2013) C03015
- J. Galán et al., Aging studies of Micromegas prototypes for the HL-LHC, JINST 7 (2012) C01041
- P.V.C Hough, Inc Proc. Int. Conf. on High Energy Accelerators and Instrumentation, 1959

Current Measurements at GIF++

Alvarez Gonzalez, Barbara (CERN) Radiation studies on MM chambers at GIF++

Current Measurements at GIF++

Current Measurements at GIF++

Alvarez Gonzalez, Barbara (CERN) Radiation studies on MM chambers at GIF++

Current Measurements at GIF++

