

The CMS electron and photon trigger for the LHC Run 2

Andrea Beschi - Università & INFN di Milano Bicocca on behalf of the CMS collaboration andrea.beschi@cern.ch

Introduction

▶ During 2017 the LHC will deliver collisions with an instantaneous luminosity up to $2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ \rightarrow Up to 60 collisions per bunch crossing (pileup, PU) ► The Level-1 (L1) trigger of CMS was upgraded in 2016: \rightarrow Architecture based on MicroTCA technology \rightarrow Efficienct electron and photon (e/ γ) identification

The CMS Electromagnetic Calorimeter (ECAL)

► The CMS ECAL is a hermetic, homogeneous calorimeter made of scintillating lead tungstate crystals \blacktriangleright L1 e/ γ trigger based on ele-

BICOCC

ments (trigger towers, TT) of the ECAL and the had-

• L1 e/ γ algorithm retuned in 2017 to fully exploit the potential of the system

ronic calorimeter (HCAL)

Algorithm & Performance

Identification of e/γ candidates

- Dynamic Clustering of ECAL and HCAL TTs
- $ightarrow \overline{
 m Recovery}$ energy loss due to bremsstrahlung, improved energy resolution
- Energy of e/γ from sum of energy of TTs
- \rightarrow Calibration to further improve energy resolution

► Rejection of jets using en-

η •

HCAL

Isolation region

ECAL

Seed tower

First neighbours

Second neighbours

Level-1 e/γ energy resolution

- Energy of L1 e/ γ :
- $E^{L1} = E^{L1}_{RAW} \times C(E^{L1}_{RAW}, |\eta|, PU)$
- ► Calibrated to match energy of offline reconstruction ▶In 2017 higher PU but similar or better resolution than 2016

• 2017 H/E selection

L1 Single EG

2016 H/E selection

E^{threshold} [GeV]

Isolation • Energy deposit in a 6×9

 (η, ϕ) TTs window Candidates are isolated if $E_{6\times9} - E_{e/\gamma} < \lambda(\eta, E_{e/\gamma}, PU)$ In 2017 new thresholds λ , higher efficiency than 2016

Cross-triggers

53 pb⁻¹ (2017) (13 TeV)

Transverse mass trigger: $W \rightarrow e\nu$ pilot study

- Targeting physical processes with e/γ candidates and other objects: \rightarrow Multiple e/ γ candidates $\rightarrow \mathbf{e}/\gamma + \mu \text{ or } \tau \text{ candidates}$ $\rightarrow \mathbf{e}/\gamma + \mathbf{jets} \ \mathbf{or} \ \mathcal{E}_T$
- ► Second isolation thresholds designed to increase acceptance at low \mathbf{E}_T for \mathbf{e}/γ in cross seeds

► Upgraded L1 trigger allows sophisticated algorithms: \rightarrow Isolated e/ γ candidate with E_T > 33 GeV \rightarrow Transverse mass $M_T = \sqrt{2E_T E_T^{e/\gamma} (1 - \cos(\Delta \varphi))} > 40 \text{ GeV}$ ► Validated on electron calibration stream, used for ultimate precision ECAL intercalibration \rightarrow Acceptance recovery of $\sim 10\%$, lower e/ γ E_T threshold $\triangleright W \rightarrow e\nu$ trigger for luminosity higher than $2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

[1] CMS collaboration, A. Zabi, The CMS Level-1 Calorimeter Trigger Upgrade for the Run II of the LHC, PoS TIPP2014 (2014) 414. 6 p.

[2] CMS collaboration, S. Chatrchyan et al., Energy Calibration and Resolution of the CMS Electromagnetic Calorimeter in pp Collisions at $\sqrt{s} = 7$ TeV, JINST 8 (2013) P09009, [1306.2016].

Presented at EPS-HEP 2017