# The protoDUNE-SP experiment and its prompt processing system

Maxim Potekhin (Brookhaven National Laboratory) for the DUNE Collaboration

EPS Conference on High Energy Physics

July 6 2017



## DUNE

- Primary Science Program
  - Precision measurement of neutrino oscillation parameters
  - Search for proton decay
  - Detection and measurement of the neutrino flux from supernovae



- DUNE detectors and subsystems
  - for details please see a presntation by Nicola McConkey in this session
  - a massive 40kT Liquid Argon modular time-projection chamber deployed as a far neutrino detector 1,300 km from FNAL and 1.5km underground



#### Single-Phase LArTPC (DUNE and its prototypes)

- One of the *two design options* for the modules of the DUNE Far Detector TPC
- Liquid Argon serves as both the target and the sensitive medium.
- Wire Sensors: two *induction planes* at a **stereo angle** (35.7°) and one *collection* plane. Implemented as Anode Plane Assemblies (APA).
- Two coordinates (in the plane) are determined via stereo projections on three planes, and the third (along the drift) via the time measurement



# **DUNE Single-Phase LAr TPC prototypes**

- Experiment with a 35t Single-Phase prototype at FNAL
  - Construction in 2015, data taking completed in early 2016 (cosmic rays)
- Larger scale prototype: protoDUNE-SP
  - Under construction at CERN
  - Major structural elements of the TPC are of the same size as in DUNE
  - Beam and Cosmic Ray data will be taken in 2018
  - Detailed detector characterization for different particle species at different momenta

# The 35t prototype at FNAL

- View of Anode Plane Assemblies installed inside the cryostat
- Image below shows the field cage
- Integrated Photon Detector
- Cold electronics (analog and digital)
- ~100 scintillation paddles outside (for triggers)





DUNE

M.Potekhin | protoDUNE-SP

# The 35t experiment data

- Took cosmic ray data in January-March 2016
- Please see a dedicated presentation in this conference (M.Wallbank)
- Example: three projection views of an electron shower
- Encountered more electronics noise than expected, problems ultimately diagnosed and understood
- Automated reconstruction shown to work on actual data



# The protoDUNE program at CERN

- The protoDUNE program:
  - large-scale engineering prototypes of Single- and Dual-Phase Liquid Argon TPCs for DUNE (CERN designation NP04 and NP02 correspondingly)
  - an international project made possible by the <u>CERN Neutrino Platform</u> Organization
- Test-beam facility is under construction in the extension (EHN1) of the CERN North Experimental Area Hall, with a purpose-built tertiary beam from the SPS (H4) to provide various particle types



# **Goals of protoDUNE-SP**

- Prototype the production and installation procedures for the Single-Phase Far Detector design.
- Validate the design from the perspective of basic detector performance.
- Accumulate large samples of test-beam data to understand/calibrate the response of the detector to different particle species.
- Demonstrate the long-term operational stability of the detector as part of the risk mitigation program ahead of the construction of the first 10kt Far Detector module.





# The Liquid Argon TPC of protoDUNE-SP

- The protoDUNE detector includes the following principal DUNE components
  - 6 Anode Plane Assemblies (APA)
    - 6m H × 2.4m W
  - 18 Cathode Plane Assemblies (CPA)
    - $2m H \times 1.2m W$
  - Field Cage (FC)
  - Photon Detector (PD)
  - Cold Electronics: inside the cryostat
  - Electron drift distance: 3.6m
  - 500V/cm drift field



- Warm Interface Boards are outside of the cryostat volume and receive data from cold electronics, transmit to DAQ via optic fiber
- Data is received by Board Readers, then assembled from fragments by Event Builders and written into high-performance storage appliance (Online Buffer)



#### **The Anode Plane Assembly Construction**

Anode Plane Assembly: 6×2.4m





### **Other protoDUNE-SP subsytems**



- Beam Intrumentation: TOF × 2, Cherenkov, Fiber Tracker (for beam particles)
- Cosmic ray tagger (in red)
- Some of these detectors will have data streams separate from those of the TPC will need to monitor separately and merge offline

# protoDUNE-SP: readout parameters

- Please see the BACKUP section for more detail
- TPC channel count: 15,360
- Digitization frequency: 2MHz
- Nominal readout window: 5ms
- Nominal beam trigger rate: 25Hz
- Single readout size: 230MB
- Lossless compression factor: 4
- Post-compression peak data rate: 1.4GB/s, Average: 0.300GB/s
- Contingencies may lead to higher rate, the benchmark of 3GB/s is assumed
- Up to 3PB of data to be collected during the run



#### protoDUNE-SP: data flow



# **Online Monitoring vs Data Quality Monitoring**

- Two complementary types of data processing providing actionable information
- Online Monitoring
  - close to real time
  - high bandwidth
  - fixed CPU resources located in the vicinity of DAQ
  - data streaming out of DAQ is the sole source of input
- Data Quality Monitoring (DQM)
  - processing time: up to an hour, allowing for more time-consuming algorithms
  - low bandwidth (only a small fraction of data is processed)
  - flexible access to a variety of resources (CERN Tier-0, local ad hoc clusters etc)
  - can use data which is not part of the DAQ stream e.g. the Beam Instrumentation data or any other type of data which will need to be merged downstream

# **DQM types of processing**

- A summary/plots of ADC-level data e.g. mean/RMS values at channel level and as a statistics over various groupings requires data decompression.
- A summary/plots of the ADC-level data in frequency space (FFT) on channel waveforms. This largely provides measures of noise and its evolution.
- A summary of the data after signal processing (uses FFT). It includes
  - "stuck code" mitigation (ADC anomalies)
  - coherent noise removal important for catching more subtle noise issues
  - noise subtraction and filtering
  - deconvolution of the response function (please see the backup slides)
  - calculation of signal correlations for diagnostic purposes
- Visualization e.g. histograms, plots, or a basic 2D event display before and after signal processing
- Beam Instrumentation monitor, validation of the trigger vis-a-vis the TPC data

#### An example of the DQM Workflow



# protoDUNE prompt processing system (p3s)

- "Express streams" and "prompt processing systems" exist in many experiments as complementary to main production systems
- p3s provides more agility, automation and monitoring than is possible by using the batch system alone, for "nearline/prompt" job execution
  - minimalistic design and straightforward installation
  - runs with or without Grid
  - simple automation of workflows: modeled as DAGs and use templates
- Flexible prioritization (and de-prioritization) scheme to assure timely execution of critical workflows
- Automatic injection of workflows triggered by fresh data
- Distributed data handling is not a part of the system
- Code and documentation on GitHub: https://github.com/DUNE/p3s



# p3s: technologies used

- pilot-based job dispatch, can be implemented with or without a batch system
- Utilising well established, popular, reliable components
  - Django (Python)
  - Apache
  - PostgreSQL (may use other RDBMS)
- CERN Openstack VM instances to host Web and DB servers
- JSON
- XML: GraphML schema for describing workflows as graphs
  - compatible with a number of third party editing and visualization packages
- NetworkX (Python)
- CVMFS for software provisioning
- EOS Storage at CERN
- Fermi-FTS to get access to data and to transmit results for storage
- Most of the payload code is based on LArSoft/art developed and maintained at FNAL, and is expected to be portable between Online Monitoring and DQM



# p3s - workload parameters

- FFT per event ~5 min
- Full reco per event ~30 min
- With the nominal 25Hz trigger and projected SPS spill profile: 300 events/min
- An assumption only a few O(1) events per minute will need to be fully processed i.e. result in event displays before and and after signal processing
- A small number of events from each file will be used to ensure the results are most current
- The projected footprint of p3s in CERN Tier-0 is about 300 cores which will handle all kinds of DQM payloads, for example
  - 300 cores keep up with 20% of the event rate just for the FFT stage
  - ...or 3% for RECO
- The exact composition and prioritization of p3s jobs is yet to be determined
- Memory use is a concern as vast majority of available nodes have 2GB/core

#### **Summary**

- The DUNE Collaboration has established an ambitious prototyping program which started with a 35t detector at FNAL, and which now involves two largescale Liquid Argon detectors under construction at CERN.
- Both the protoDUNE-SP detector and its projected data are large scale.
- To facilitate comissioning of the detector and to ascertain its optimal operation and efficient use of beam time a Data Quality Monitoring (DQM) system will be put in place.
- The protoDUNE prompt processing system "p3s" has been developed to support DQM, it is portable and flexible due to utilization of standard technologies and components which are easy to deploy.
- p3s has been tested at CERN, with realistic jobs and at scale
- Service deployed in the CERN Cloud (Openstack)

#### **Backup slides**



#### protoDUNE-SP: readout parameters detail

- TPC channel count: 15360
- Digitization frequency: 2MHz
- Nominal readout window: 5ms
- Nominal beam trigger rate: 25Hz
- Single readout size: 230MB
- Lossless compression factor: 4
- Post-compression peak data rate: 1.4GB/s
- Average data rate: 0.300GB/s
- Contingencies
  - higher trigger rate (50-100Hz)
  - lesser compression (if the noise levels are above predicted)
  - larger number of cosmic triggers (if necessary for certain measurements)
- To size up the data handling system, the benchmark of 3GB/s rate is assumed
- Nominal 20Gbps network bandwidth from the experiment to CERN central storage
- Up to 100TB daily data volume
- ~3PB of data to be collected during the run

## Signal formation in the Single-Phase LArTPC

Drifting charge Signal on wire

Shockley-Ramo theorem — instantaneous electric current induced by a charge moving in the vicinity of an electrode:  $i=E_yqv$ 

ADC input

- Electronics response (e.g. amplifier) is • convoluted with the wire signal shape
- Bipolar signals on induction wires •





Figure 2. Simulated digitized signals from a central wire in each plane for a minimum-ionizing particle track traveling parallel to the wire plane and perpendicular to each wire plane orientation. The number of drifting ionization electrons is assumed to be 4600/mm of track. The gain and peaking time of the cold electronics are assumed to be 14.7 mV/fC and 2  $\mu$ s, respectively.

#### Weighting Field of a U Wire

#### M.Potekhin | protoDUNE-SP

#### p3s: web-based UI

#### թઝઁջ

| Sites                                       | DAGs Wor      | <u>kflows</u> | 8                  | Jobs F                                 | lots                  | 5         | Ē        | Data   | -                                                                     | Data     | Туре        | s          |            |                    |                      |                      |       |     |
|---------------------------------------------|---------------|---------------|--------------------|----------------------------------------|-----------------------|-----------|----------|--------|-----------------------------------------------------------------------|----------|-------------|------------|------------|--------------------|----------------------|----------------------|-------|-----|
|                                             | Summary       |               | System             |                                        |                       |           |          |        |                                                                       |          |             |            |            |                    |                      |                      |       |     |
| Object 🗠                                    |               | Number 🗠      |                    | Attribute 🗠                            | e 🗠 Value 🔿           |           |          |        |                                                                       |          |             |            |            |                    |                      |                      |       |     |
| Pilots: total/idle/running/stopped          |               | 75/1/74/0     |                    | Current time                           | 05/04/17 21:16:40 EST |           |          |        |                                                                       |          |             |            |            |                    |                      |                      |       |     |
| Jobs: total/defined/running/finished 1075/: |               |               | jobs               | (total in DB: 5)                       |                       |           |          |        |                                                                       |          |             |            |            |                    |                      |                      |       |     |
| Workflows                                   | : total/-/-/- | 0/-/-/-       | Job St             | ates (select one):                     |                       |           |          |        |                                                                       |          |             |            |            |                    |                      |                      |       |     |
|                                             |               |               | • (<br>• (<br>Subm | Running<br>Finished<br>Pilot Timed Out |                       |           |          |        |                                                                       |          |             |            |            |                    |                      |                      |       |     |
|                                             |               |               | ID 🛆 U             | Juid 🛆                                 | User 🛆                | Name 🛆    | Wfuuid 🛆 | type 🗠 | Payload                                                               | Params 🛆 | Pri. 🛆 t.li | imit 🛆 Sta | ate 🛆 d    | lefined 🛆          | started 🗅            | stopped 🗠            | Pid 4 | Err |
|                                             |               |               | 7 6                | 44ee502-1112-11e7-9f74-001d096774dd    | mxp                   | sleep1000 | -        | sleep  | /mnt/nas01/users<br>/mxp/projects<br>/p3s/inputs<br>/jobs/sleep100.sh | -        | 1 10        | 10 rur     | nning 21   | 0170411<br>9:55:51 | 20170411<br>19:55:57 | -                    | 15952 | -   |
|                                             |               |               | 3 k                | 3378608-1f06-11e7-b642-001d0967b087    | mxp                   | sleep1000 | -        | sleep  | /home/maxim<br>/projects<br>/p3s/inputs<br>/jobs/sleep100.sh          | -        | 1 10        | 10 no      | nstarter 1 | 0170411<br>8:32:09 | 20170411<br>18:32:12 | -                    | _     | _   |
|                                             |               |               | 4 3                | 08007ca-1107-11e7-a220-001d0967b087    | mxp                   | sleep1000 | -        | sleep  | /mnt/nas01/users<br>/mxp/projects<br>/p3s/inputs<br>/jobs/sleep100.sh | _        | 1 10        | 10 fini    | shed 21    | 0170411<br>8:35:39 | 20170411<br>18:35:43 | 20170411<br>18:37:24 | 11401 | 0   |
|                                             |               |               | 5 6                | 2636506-1112-11e7-9fb8-001d096774dd    | mxp                   | sleep1000 | -        | sleep  | /mnt/nas01/users<br>/mxp/projects<br>/p3s/inputs<br>/jobs/sleep100.sh | -        | 1 10        | 10 rur     | nning 21   | 0170411<br>9:55:47 | 20170411<br>19:55:57 | -                    | 4051  | _   |
|                                             |               |               |                    |                                        |                       |           |          |        | /                                                                     |          |             |            |            |                    |                      |                      |       |     |

## p3s: GraphML for workflow description

```
<data key="d104">100</data>
  <data key="d105">1</data>
</node>
<node id="reco">
  <data key="d101">/bin/grep -c TEST $OUTTXT > $FINTXT</data>
 <data key="d102">{"P3S EXECMODE":"SHELL"}</data>
  <data key="d103">reco</data>
 <data key="d104">100</data>
 <data key="d105">1</data>
</node>
<node id="NOOP2"> <!-- Dummy node is a placeholder since out-data is final -->
  <data key="d101"></data>
  <data key="d102">{}</data>
  <data key="d103">noop</data>
  <data key="d104">0</data>
 <data key="d105">0</data>
</node>
<!-- ++++++ DATA ++++++ -->
<edge source="NOOP1" target="reduction">
 <data key="d1">input.txt</data>
 <data key="d2">/home/maxim/p3sdata/</data>
  <data key="d3">TXT</data>
  <data key="d4">INPTXT</data>
  <data key="d5">Simulated input</data>
</edge>
```

# p3s service: Running in CERN Cloud

| CERN Accelerating science |                    |                           |                                                                   |           |          |        |                   |               | Si          | gned in as: mpotekhi Sign ( | out Directory   |    |
|---------------------------|--------------------|---------------------------|-------------------------------------------------------------------|-----------|----------|--------|-------------------|---------------|-------------|-----------------------------|-----------------|----|
| 🖸 openstack               | ■ DUNE →           |                           |                                                                   |           |          |        |                   |               |             |                             | Тоо             | s  |
| Project                   | Instance           | S                         |                                                                   |           |          |        |                   |               |             |                             |                 |    |
| Compute                   |                    |                           |                                                                   |           |          |        |                   |               |             |                             |                 |    |
| Overview                  |                    |                           | INSTANCE NAME = +                                                 |           |          |        |                   | A LAUNCH INST | MORE ACTION | MORE ACTIONS +              |                 |    |
| Instances                 | Instance Name      | Image Name                | IP Address                                                        | Size      | Key Pair | Status | Availability Zone | Task          | Power State | Time since created          | Actions         |    |
| Volumes                   | p3s-content        | CC7 - x86_64 [2017-04-06] | <ul><li>188.185.77.72</li><li>2001:1458:d00:9::100:142</li></ul>  | m2.medium | -        | Active | cern-geneva-a     | None          | Running     | 3 days                      | CREATE SNAPSHOT |    |
| Access & Security         | p3s-db             | CC7 - x86_64 [2017-04-06] | <ul><li>188.185.85.205</li><li>2001:1458:d00:f::100:1c7</li></ul> | m2.medium | -        | Active | cern-geneva-a     | None          | Running     | 3 days, 1 hour              | CREATE SNAPSHOT | ų  |
| Container Infra           | p3s-web            | CC7 - x86_64 [2017-04-06] | <ul><li>188.185.85.175</li><li>2001:1458:d00:f::100:1a9</li></ul> | m2.medium | -        | Active | cern-geneva-a     | None          | Running     | 3 days, 1 hour              | CREATE SNAPSHOT | ų. |
| Orchestration             | Displaying 3 items |                           |                                                                   |           |          |        |                   |               |             |                             |                 |    |