

Soft Diffraction (non-p QCD)

Mediated by strongly interacting colourless Pomerons

- Typical experimental signature for diffraction are rapidity gaps, but signal depends on purity, pile-up, gap-survival.
- Forward protons present in most of diffractive processes represent clear signature

Hard Diffraction (p-QCD)

 Diffractive processes can also be observed in events with a hard scale present i.e jets and/or W/Z bosons.

- Rapidity gaps present but can be spoiled by additional soft interactions
- Proton tag crucial in addition to measurement in the central detector

Why AFP?

- ALFA is optimized for elastic scattering measurement at very low momentum transfer
 - Needs to measure small proton fractional momentum (ξ) and P $_{ au}$

LHC nom. $0.06 < \xi < 0.12$

Low-t Rol for elastic scattering & otto measurement

- Acceptance depends on LHC optics: ξ ~ 0 reached in high-β*
 (low focusing) mode.
 - Using standard optics acceptance is not optimal for diffractive studies to access lower ξ need new forward proton detectors

The AFP Detector

- 2 stations at ±205 & ±217 m from IP
- Housed in horizontal Roman Pots
 - Near stations house 3D pixel tracking detectors
 - Far stations also have ToF counters
- Pixels tag and measure momentum
 & emission angle of forward protons
- Time of flight to identify origin of protons in longitudinal direction
 - $\Delta z \sim 2mm$ if time resolution of ToF is 10ps)

AFP Status

• AFP 0+2 in 2016

- installation of 2 trackers on one side.
- Data collected in special low-μ runs
 (L = 500 nb-1) for studies of single
 diffraction
- Data analyses are already in progress

AFP 2+2 in winter 2016/2017

- installation of the other arm with ToF detectors on both sides
- Data acquisition in standard runs with high pile-up as well as dedicated runs
- Studies focused on central diffraction

The Tracking Detectors

- Together with LHC magnets measure momentum of forward scattered protons
 - Resolution of 15 μm needed
 - Radiation hardness crucial $5x10^{15}$ p/cm²/100 fb⁻¹
- To maximize approach to the beam (2-3 mm) inactive edge < 200 μm
 - In each station 4 pixel layers 336 x 80 pixels (50 x 250 μ m²)
 - 3D pixel sensors derived from ATLAS IBL (rad-hard)

The ToF Counters

- ToF Detector for pileup background reduction e.g. $\sigma_t = 10 \text{ ps} => \sigma_z = 2.1 \text{ mm}$
 - − High resolution: $\sigma_t \le 15$ ps
 - High rate: ≤ 5 MHz
 - Radiation hard (100-300 fb⁻¹)
 - Long life, high rate MCP-PMT readout
 - Segmentation in x
- L1 Trigger capability
- Low mass: 1.8%λint/bar
- ToF Cerenkov Radiator Design: "Lqbar"
 - Each bar σt ≤ 30 ps Tests so far: 25-30 ps
 - (4X) 4 independent bars: ≤ 15 ps
 - Eff. > 90%, high granularity for multiple p's

Estimate of Pileup Background Reduction

AFP (0+2) Installation in 2016

- Two stations installed on one side ATLAS tracking detectors installed in the stations but no ToF
- Passed LHC qualication DAQ system integrated with ATLAS trigger system integrated with ATLAS

Data Taking in 2016

- Commissioning runs with various detector positions:
 - ~10 h acquisition (L~0.5 pb $^{-1}$) at low pile-up (μ < 0.3) Physics run
 - ~15 h acquisition (L~2 pb $^{-1}$) at high luminosity (max μ~35 & 3->600 bunches) study background and beam conditions
- Data analysis is ongoing......

Hot of the Press We are Observing Diffractive Physics

- ξ_{cal} is the fraction of the proton mom. participating in the hard interaction estimated using the calorimetry
- X is the deflection of the AFP proton into the AFP detector

What can be Studied with (0+2)

- PRESENTLY STUDIED BY ATLAS
- Inclusive single diffraction
- Diffractive di-jet production

Single diffraction of W/Z to be studied by AFP

- Relatively high x-section single proton detectable in AFP (need 10-100 pb⁻¹ of integrated luminoisty
 - We need to run with $\mu = 1$ for this physics
 - AFP provides access to so far non-measurable quantities like:

$$\xi = (E - E') / E$$
 and $t = (p - p')^2$

1st Experience with High µ<26 Data

- Data-taking at high pile-up (μ <26), 300 bunches and AFP distance 20 σ (~2mm) from the beam: background, AFP performance, trigger rate
- ~2 hits/track observed as expected due to 14° tilt of sensors
- Trigger rates compatible with simulation in wide pile-up range

2016-17 AFP (2+2)

- Both arms now installed
 - All stations with 4 layers of silicon sensors
 - Far stations also include ToF counters
 - All detectors operational
 - Beam-based alignment done
 - Ready to take data (both in special and normal runs)!

AFP (2+2) Physics

- Low pile-up runs for studies of high cross-section processes
 - Standard runs for small cross-section processes studies
 - Double proton tag allows direct observation of central diffraction - access to full event kinematics
- Key new physics channel anomalous quartic couplings (x100 reduction in "standard" LHC analysis method) PRD

Central diffractive jets & γ+jets production

Two photon production and photoproduction

Quartic couplings – access to new physics

Final Words

• When AFP starts up the LHC for ATLAS will not only be a p-p collider but also a IP-IP, a γ -IP and a γ - γ collider!

EXTRA SLIDES

What can be Studied with (0+2)

