The HEPD apparatus for the CSES mission

Beatrice Panico
INFN Naples
THE CSES MISSION

CSES: China Seismo-Electromagnetic Satellite

- Space mission with different goals
- Collaboration China National Space Administration (CNSA) - Italian Space Agency (ASI)
- Developed by:
 - China Earthquake Administration (CEA)
 - Italian National Institute for Nuclear Physics (INFN)
 - Chinese and Italian Universities

- 98° inclination Sunsynchronous circular orbit
- Altitude ~500 km
- Expected lifetime ~5 years
- Launch scheduled for 2017, August
THE CSES MISSION

CSES: China Seismo-Electromagnetic Satellite

Several instruments on board:
- a Search-Coil Magnetometer, a High-Precision Magnetometer and Electric Field Detector for measuring the *magnetic and electric fields*
- a Plasma Analyser Package and a Langmuir Probe for *measurements of local plasma disturbances*
- a GNSS Occultation Receiver and a three frequency (VHF/UHF) Transmitter for the *study of profile disturbance of plasma*
- the High-Energy Particle Package and High-Energy Particle Detector for the *measurement of the flux and spectrum of energetic particles*
THE HEPD DETECTOR

HEPD: High Energy Particle Detector

The High-Energy Particle Detector (HEPD) is developed by the Italian members of the CSES – LIMADOU mission

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy range</td>
<td>Electron: 3-100 MeV</td>
</tr>
<tr>
<td></td>
<td>Proton: 30-200 MeV</td>
</tr>
<tr>
<td>Angular resolution</td>
<td><8° @ 5 MeV</td>
</tr>
<tr>
<td>Energy resolution</td>
<td><10% @ 5 MeV</td>
</tr>
<tr>
<td>Particle Identification</td>
<td>>90%</td>
</tr>
<tr>
<td>Maximum Omni-directional Flux</td>
<td>$10^7 \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$ (accepted by trigger before pre-scaling)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-10 °C - + 35 °C</td>
</tr>
<tr>
<td>Mass (including electronics)</td>
<td>< 43 kg</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>< 43 W</td>
</tr>
<tr>
<td>Scientific Data Bus</td>
<td>RS-422</td>
</tr>
<tr>
<td>Data Handling Bus</td>
<td>CAN 2.0</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Event by Event</td>
</tr>
<tr>
<td>Life span</td>
<td>> 5 Years</td>
</tr>
</tbody>
</table>
THE HEPD DETECTOR

- The **tracker**, made of two planes of double-side silicon micro-strip sensors; each tracker plane includes 3 ladders made of 2 modules
- The **trigger system**, made of one layer of plastic scintillator, divided into 6 segments; different trigger combinations can be used
- The **range calorimeter**, which consists of two parts:
 - The first part is made with 16 plastic scintillator planes, 1cm thick
 - The bottom part of the calorimeter consists of a layer with 9 LYSO crystals
- The **veto system**, five plastic scintillator counters, 5 mm thick
- The **electronics sub-system**
EXPECTED RATE

Expected rate of cosmic rays along the satellite orbit

Data from PAMELA experiment
- **Period:** July, 7th – November, 30th 2006 (142 Days)
 - December 13th: Solar flares is excluded
- **Latitude:** [-60°;+60°]
- **Altitude:** [490 – 520] km
- **Geometric factor** PAMELA/HEPD ~ 6

Different trigger masks depending on the orbital zone!
TRIGGER CONFIGURATIONS

Different trigger masks depending on the orbital zone!

1. T1 & P1
2. T1 & P1 & P2
3. T1 & P1 & P2 & P3
4. T1 & (P1 || P2)
5. (T1,3 || T1,4) & (P1)
6. T1 & (P1 || P2) & (P16 || P15)
7. T1 & (P1 || P2) & P17
THE HEPD MODELS

4 HEPD versions must be produced:

- Electrical Model, EM (2014)
- Structural and Thermal Model, STM (2015)
- Qualification Model, QM (2016)
- Flight Model (FM) (2016)

Front view: The trigger system with its six segments is visible.

The bottom part of the HEPD QM calorimeter. The 9 LYSO crystals are shown.

Side view: The 16 plastic scintillator planes can be seen. The PMTs are at the corners of each calorimeter plane.
Beam test @BTF of the "Laboratori Nazionali di Frascati" of INFN

- Electrons and positrons from 30 to 150 MeV

Electrons 30 MeV
~10^4 events

The HEPD FM during the beam test at the BTF

Preliminary
TEST BEAM @BTF

The HEPD FM during the beam test at the BTF
TEST BEAM @BTF

Electrons 30 MeV

Total ADC counters vs. number of hit Calo counters

Hit channels for beam centered in position T4
TEST BEAM @BTF

Total charge measured in the Calo ($\sum_i P_i$)

\[\chi^2 / \text{ndf} = 66.05 / 9 \]
- Constant: 64.7 ± 14.6
- Mean: 2533 ± 7.9
- Sigma: 395.4 ± 5.1

Sigma/Peak: 0.111

Electrons 30 MeV

Event selection:
- No Lateral Veto hit
- No Bottom veto hit
- More than 12 crossed planes

Total charge measured in the Calo for different impact point of the beam

\[\chi^2 / \text{ndf} = 30.34 / 21 \]
- Constant: 228.7 ± 5.7
- Mean: 7357 ± 6.6
- Sigma: 1133 ± 21.5

Sigma/Peak: 0.154

B. Panico – EPS/HEP 05-12 July 2017, Venice
Electrons 30 – 120 MeV

Event selection:
NoLateral Veto hit
No Bottom veto hit
More than 12 crossed planes

Counts are normalized to the LYSO central cristal
TEST BEAM @BTF

Electrons 30 – 120 MeV

Event selection:
- NoLateral Veto hit
- No Bottom veto hit
- More than 12 crossed planes

UPPER Calo

- Signal/Peak
 - Y-axis: 0.16 to 0.02
 - X-axis: 40 to 120 MeV

LYSO

- ADC events (LYSO peak)
 - Y-axis: 0 to 400
 - X-axis: Energy loss (MeV)

TEST BEAM @Trento

Beam test @Proton Cyclotron of Trento

- Protons from 51 to 300 MeV

Number of hit Calo planes

The HEPD FM during the beam test at Trento
TEST BEAM @Trento

Energy loss in the Calo

37 MeV
Sigma/peak 0.11

51 MeV
Sigma/peak 0.09

70 MeV
Sigma/peak 0.08

100 MeV
Sigma/peak 0.08

125 MeV
Sigma/peak 0.07

154 MeV
Sigma/peak 0.07

174 MeV
Sigma/peak 0.09

228 MeV
Sigma/peak 0.08
TEST BEAMS

Fully contained protons

Not contained protons

B. Panico – EPS/HEP 05-12 July 2017, Venice
Energy loss in the LYSO

154 MeV
Sigma/peak 0.33

174 MeV
Sigma/peak 0.09

228 MeV
Sigma/peak 0.05

Energy resolution for fully contained events
CONCLUSIONS

✓ Trigger configurations have been chosen according to the available bandwidth for the data transfer

 ✓ It is changed depending on the orbital zones crossed by the satellite

✓ Requests on energy resolution and electron/proton discrimination have been answered

✓ HEPD Flight Model has been tested

 ✓ Beam test @BTF of the "Laboratori Nazionali di Frascati" of INFN
 ✓ Beam test @Proton Cyclotron of Trento
 Data under study

✓ HEPD Flight on August, 16th 2017