HEP2017 - EPS Conference in High Energy Phyiscs

Venice, July 5 – 12, 2017

The new CGEM Inner Tracker and the custom TIGER ASIC for the **BESIII** Experiment

Simonetta Marcello

Torino University and INFN on behalf of the CGEM-IT Group

Outline

2

- BESIII Experiment
- The new CGEM Inner Tracker
- Study of Performance at Beam Test
 - Planar and Cylindrical prototypes
- The custom ASIC: TIGER
- Conclusions and Outlook

BESIII Talks in Parallel Sessions

- July 7 Charm Meson Physics at BESIII by Jiangchuan Chen
- July 8 Light Hadron Spectroscopy at BESIII by Francesca De Mori

 $\sqrt{s} = 2 - 4.6 \text{ GeV}$

Aging of the MDC Inner Tracker

MDC (Main Drift Chamber)

43 layers into Two Trackers sharing the same He-based gas mixture

- Inner Tracker
 - 8 stereo-layers
- Outer Tracker
 - 12 axial layers
 - 16 stereo layers
 - 7 axial layers

Performance

- Spatial resolution $\sigma_{r\phi} = 130 \mu m$
- Momentum resolution 0.5% @1GeV
- dE/dx resolution 6%

Issues

- Significant ageing in the Inner Tracker
- The increase of Luminosity is speeding up the ageing
- Working at lower HV to keep current under control
- Lower Efficiency
- Gain loss/year ~ 4%

How to run until 2022 and beyond?

A replacement is needed

CGEM: a new Inner Tracker for future data taking

Replace the 8 layers of MDC with 3 layers of cylindrical triple GEM

arXiv:1706.02428

5

- Each layer is made by a triple GEM 5/2/2/2 moulded upon a cylindrical shape
- XV segmented anode
- Readout strips (pitch, X, V) 650/570/130 µm

Requirements

- Spatial resolution $\sigma_{r-\phi}$ ~130 µm, σ_z ~ 1 mm
- Momentum resolution ~ 0.5 % @ 1 GeV/c
- Rate capability 10⁴ Hz/cm²
- Efficiency ~ 98%
- Material budget $\leq 1.5 \% X_0$ all layers
- Solid angle coverage ~ 93 %
- Magnetic field1T
- Inner radius 78 mm Outer radius 179 mm

Beneficiaries and Partner Organisation INFN (FE, LNF, TO) Mainz U - Uppsala U - IHEP HORIZON 2020 BESIIICGEM Project RISE-MSCA-H2020-2014 call

State of the Art and Innovation

Previous Experiment

- First Cylindrical GEM detector (4 layers) designed and implemented by KLOE-2 at DAONE
- Operated at 0.5 T with a spatial resolution of 350 µm
- Digital readout (XV strips with stereo angle 25°-30°)

Innovations @BESIII

- Cathode and Anode frame made of Rohacell instead of Honeycomb
- New anode design with a jagged layout to reduce of 30% the inter-strip capacitance
- Analogue readout to achieve the required spatial resolution with a limited number of channels (~10 000)
 - \rightarrow TIGER, a dedicated custom ASIC to provide Charge and Time measurements by TDC, ADC and ToT
 - \rightarrow Both Charge and Time information will be used to reconstruct the position with B = 1T

Rohacell X₀ ~ 0.33 % per Layer

TIGER ASIC

Charge and Time

Measurements of performance

Beam Test

- Planar GEM December 2014 @ CERN
- Planar GEM June 2015 @ CERN
- Planar GEM May/June 2016 @ CERN
- Cylindrical GEM October 2016 @ CERN
- Cylindrical GEM July 2017 @ CERN

Cosmic rays

Cylindrical GEM ongoing

Planar triple GEM prototype

Cylindrical triple GEM

@ CERN

- H4 beam line at SPS, North area
- **Magnetic field** GOLIATH dipole
- B field 1.5 T both polarity Beam
- Muons/pions
- Momentum 150 GeV/c
- Intensity 10⁴-10⁶ events/spill

Beam test with Planar triple GEM

- Performance measured with different geometries, gas mixtures and E fields
- Efficiency plateau on the two views reaches ~97% at a gain of ~6000

Planar triple GEM A weighted average position is measured from the fired strips and its performance is better than the digital readout, which is limited by the strip pitch

Inclined tracks and/or magnetic field increase the Cluster Size

A different method to reconstruct the position is needed

9

Combining Charge Centroid & µTPC methods

10

de-focusing

B = 1 T

-30 -20 -10

0

10

20

30

Incident angle (deg)

40 50

Resolution (µm)

1000

600

400

200 -1

-40

focusing

B=1T

Charge centroid

uTPC

G1 G2 G3

B = 1T

- Planar triple GEM • Inclined tracks and/or magnetic field \rightarrow Increase cluster size \rightarrow The µTPC method can be used
- The drift gap is seen as a micro Time Projection Camber JINST, 9 C01017, 2014
- The spatial resolution can be improved using the Time information on each strip and the drift velocity

Work in progress A combination of the two methods allows to keep the resolution stable in the full range of incident angles

Best worldwide Spatial Resolution for Triple GEM in high magnetic field

Beam test with the Cylindrical triple-GEM

- First beam test @ CERN with prototype of Layer-2
- 3 mm drift gap (new Layer with 5 mm is under assembly)
- Gas mixture Ar/CO₂ (70/30)
- X and V views, only X instrumented

Goals

- CGEM at 42° to test the performance along the longitudinal strip @ B = 1 T
- Comparison between cylindrical and planar GEM measurements
- Test the stability of the detector under beam conditions
- Test under high intensity pion beam

Cylindrical and Planar measurements

- Orthogonal tracks and B = 0 with Charge Centroid method
- Resolution of CGEM is in agreement with planar GEM \rightarrow about 110 µm

Test under extreme conditions

- HV = 400 V for each GEM foil \rightarrow gain 10⁵ \rightarrow Stable
- High intensity beam \rightarrow some ten of kHz/cm² \rightarrow No current peaking problem

A second Cylindrical GEM layer is under test @ CERN in these days

CC Resolution vs Mean Cluster Size

11

Readout Electronics: TIGER ASIC

Our Aim: Spatial Resolution \leq 130 μ m \Rightarrow Analogue Readout is nedeed

Requirements

Should provide Charge and Time measurements

for Charge Centroid and µTPC modes

and feature a fully-digital output

- Input charge: 1 50 fC
- Sensor Capacitance: up to 100 pF
- Rate per Channel: 60 kHz (safety factor of 4 included)
- Time resolution: 4-5 ns
- Power consumption ~ 10 mW/channel
- Should be radiation tolerant for Single Event Upset

A custom ASIC has been designed and developed TIGER (Torino Integrated GEM Electronics Readout)

Tape out of 1st silicon May 2016

- 64-channels
- 5x5 mm² UMC110 CMOS
- Digital Backend inherited
- from TOFPET2 ASIC for PET
- medical applications (+ SEU)

TIGER Design

13

arXiv:1706.02267

• First silicon Tape-out

MPW in May 2016

• Test on silicon

started in Nov 2016

Front End

Charge Sensitive Amplifier + two shapers (Time and Charge)
Time-based readout

- Single or double threshold readout
- Time stamp on rising/falling edge (sub-50 ps binning quad-buffered TDC)
- Charge measurement with Time-Over-Threshold

Time and amplitude sampling

- Time stamp on rising edge (sub-50 ps binning quad-buffered TDC)
- Sample-and-Hold circuit for peak amplitude sampling
- ightarrow Slow shaper output voltage is sampled and digitised with a 10-bit Wilkinson ADC

TDC/ADC local controller

- on-chip bias and power management
- on-chip calibration circuitry

14

TIGER preliminary tests

✓ RMS Noise ≈ 3.5 mV @ 100 pF 50% higher than simulations - RMS Jitter ≈ 3.7 ns for Q_{in} = 3 fC @ 100 pF

Electrical characterization

- Time-based readout working properly
- Charge measurement S&H linearity assessed
- Baseline dependence on Temp, due to bias conditions of holder circuit → minor revision needed
- Second Prototype not needed → Engineering Run within July 2017 → to produce 160 ASICs + Spares

Test with CGEM prototype

- First signals acquired with Cosmic rays and ⁹⁰Sr source Data analysis ongoing
- Next step: test with conditions close to the final ones (HV system, cables, FEB, ...)

Conclusions and Outlook

15

- An innovative Cylindrical GEM detector with Charge and Time readout is under construction and test to replace the BESIII Inner tracker which is affected by ageing
- Performance and optimization of a planar GEM prototype have been studied under several conditions (HV, gas mixtures, fields)
- Combining Charge Centroid and µTPC modes, the spatial resolution is stable and results are beyond the state of the art for GEM detectors operated in B field
- A first Cylindrical GEM layer has been tested w/o B field and its performance is close to planar GEM
- A second Cylindrical GEM layer is ready and under test @ CERN in these days
- TIGER: a custom ASIC for analogue readout (featuring Charge and Time measurements) has been developed and it is under test with real CGEM signals with cosmic rays and ⁹⁰Sr source
- TIGER engineering run is foreseen with minor revisions and different design flavours within this month
- Three CGEM layers will be tested with TIGER and will be ready for shipping in February 2018
- CGEM detector installation @ IHEP is planned in Summer 2018

GEM Technology

- The signal depends on the gas mixture, the geometry and the applied fields
- High efficiency needs a gain of 10³ 10⁴, while safety standard requires a discharge probability below 10⁻⁵

Readout strips (pitch, X, V) 650/570/130 µm

The GEM foils placed between anode and cathode provide a gain of $\sim 10^3 - 10^4$ at lower voltages \rightarrow lower discharge probability

Physics advantages using CGEM in BESIII

- •Better analysis for final states with short life particles
- Better precision on secondary vertex reconstruction
- •XV readout improves spatial resolution in z coordinate (2mm \rightarrow 1mm)
- •Triple-GEM technology shows higher resistance to high particle flux
- Triple-GEM technology shows lower aging effects

Vertex resolution of K_{s}^{0} and Λ particles improves between 2 and 3 times over the drift chamber

• The avalanche size depends on the gas diffusion, which is affected by E field and gas mixture

• A weighted average position is measured from the fired strips and its performance is better than the digital readout, which is limited by the strip pitch

The best performance of CC method is achieved when the number of fired strip > 2

Inclined tracks and B = 0

• The cluster size increases and the charge distribution

on the anode is no more Gaussian

 \rightarrow Charge Centroid method fails

B ≠ 0

- The simultaneous presence of E and B fields bends the electron trajectories
- \rightarrow the charge distribution on the anode is no more Gaussian
- \rightarrow Charge Centroid method fails again

Inclined tracks and/or magnetic field increase the cluster size

A different method to reconstruct the position is needed

21

The µTPC method

- Inclined tracks and/or magnetic field \rightarrow Increase cluster size \rightarrow The µTPC can be used
- The drift gap is seen as a micro Time Projection Camber JINST, 9 C01017, 2014
- The spatial resolution can be improved for inclined tracks and with $B \neq 0$ using the Time information on each strip and the drift velocity

- Knowing the drift velocity from Garfield simulation, a bi-dimensional point is assigned to each fired strip. These points are used to reconstruct the track in the conversion region
- A linear fit is used to reconstruct the path and to measure the particle position

The µTPC method vs Charge Centroid

23

- Inclined tracks and/or magnetic field \rightarrow Increase cluster size \rightarrow The µTPC method can be used
- The drift gap is seen as a micro Time Projection Camber JINST, 9 C01017, 2014
- The spatial resolution can be improved using the Time information on each strip and the drift velocity

A combination of Charge Centroid and µTPC methods is needed

Inclined tracks and $B \neq 0$

- Two different effects can be observed
- focusing effect: Lorentz & inclination angles concordant
- \rightarrow smaller cluster size
- de-focusing effect: Lorentz & inclination angles discordant
- \rightarrow bigger cluster size

ON-DETECTOR electronics

Front End boards located on the detector to preserve the S/N ratio

OFF-DETECTOR electronics

25

Readout Cards and Data Collector boards as close as possible to the detector