The new CGEM Inner Tracker and the custom TIGER ASIC for the BESIII Experiment

Simonetta Marcello

Torino University and INFN
on behalf of the CGEM-IT Group
Outline

- BESIII Experiment
- The new CGEM Inner Tracker
- Study of Performance at Beam Test
 - Planar and Cylindrical prototypes
- The custom ASIC: TIGER
- Conclusions and Outlook

BESIII Talks in Parallel Sessions
- July 7 - Charm Meson Physics at BESIII by Jiangchuan Chen
- July 8 – Light Hadron Spectroscopy at BESIII by Francesca De Mori
Physics goals cover a large and diverse range
Charmonium, Open Charm and Light Hadron Spectroscopy, τ-physics and more

$$\sqrt{s} = 2 - 4.6 \text{ GeV}$$
Aging of the MDC Inner Tracker

MDC (Main Drift Chamber)
43 layers into Two Trackers sharing the same He-based gas mixture
- Inner Tracker
 - 8 stereo-layers
- Outer Tracker
 - 12 axial layers
 - 16 stereo layers
 - 7 axial layers

Issues
- Significant ageing in the Inner Tracker
- The increase of Luminosity is speeding up the ageing
- Working at lower HV to keep current under control
- Lower Efficiency
- Gain loss/year ~ 4%

Performance
- Spatial resolution $\sigma_r = 130\mu m$
- Momentum resolution 0.5\% @1GeV
- dE/dx resolution 6\%

How to run until 2022 and beyond?
A replacement is needed
CGEM: a new Inner Tracker for future data taking

Replace the 8 layers of MDC with 3 layers of cylindrical triple GEM

Requirements

• Spatial resolution \(\sigma_r, \phi \approx 130 \mu m, \sigma_z \approx 1 mm \)
• Momentum resolution \(\approx 0.5 \% @ 1 \text{ GeV/c} \)
• Rate capability \(10^4 \text{ Hz/cm}^2 \)
• Efficiency \(\approx 98\% \)
• Material budget \(\leq 1.5 \% X_0 \) all layers
• Solid angle coverage \(\approx 93\% \)
• Magnetic field \(1 T \)
• Inner radius 78 mm Outer radius 179 mm

• Each layer is made by a triple GEM 5/2/2/2 moulded upon a cylindrical shape
• XV segmented anode
• Readout strips (pitch, X, V) 650/570/130 \(\mu m \)

arXiv:1706.02428

Beneficiaries and Partner Organisation
INFN (FE, LNF, TO)
Mainz U - Uppsala U - IHEP

HEP2017 - Simonetta Marcello - July 5-12, 2017
State of the Art and Innovation

Previous Experiment

- First Cylindrical GEM detector (4 layers) designed and implemented by KLOE-2 at DAΦNE
- Operated at 0.5 T with a spatial resolution of 350 µm
- Digital readout (XV strips with stereo angle 25°-30°)

Innovations @BESIII

- Cathode and Anode frame made of Rohacell instead of Honeycomb
- New anode design with a jagged layout to reduce of 30% the inter-strip capacitance
- Analogue readout to achieve the required spatial resolution with a limited number of channels (~10 000)
 → TIGER, a dedicated custom ASIC to provide Charge and Time measurements by TDC, ADC and ToT
 → Both Charge and Time information will be used to reconstruct the position with B = 1T
Measurements of performance

Beam Test
- Planar GEM December 2014 @ CERN
- Planar GEM June 2015 @ CERN
- Planar GEM May/June 2016 @ CERN
- Cylindrical GEM October 2016 @ CERN
- Cylindrical GEM July 2017 @ CERN

Cosmic rays
- Cylindrical GEM ongoing

@ CERN
- H4 beam line at SPS, North area
- GOLIATH dipole
- B field 1.5 T both polarity

Beam
- Muons/pions
- Momentum 150 GeV/c
- Intensity 10^4-10^6 events/spill

Planar triple GEM prototype

Cylindrical triple GEM
Beam test with Planar triple GEM

- Triple GEM 10x10 cm²
- X view + Y view
- Strip pitch 650 µm
- Gas mixture
 - Ar/CO₂ (70/30)
 - Ar/iC₄H₁₀ (90/10)
- Readout by APV25 ASIC

- Performance measured with different geometries, gas mixtures and E fields
- Efficiency plateau on the two views reaches ~97% at a gain of ~6000

Efficiency ~97%
The Charge Centroid method

A weighted average position is measured from the fired strips and its performance is better than the digital readout, which is limited by the strip pitch.

Orthogonal tracks $\vartheta = 0^\circ$ and $B = 0$
- Charge distribution \rightarrow Gaussian
- Best performance \rightarrow Res. $< 100 \, \mu m$
 \rightarrow Gain > 6000
 \rightarrow No. of fired strip > 2

Inclined tracks and $B = 0$
\rightarrow Inclined tracks and/or magnetic field increase the Cluster Size
\rightarrow A different method to reconstruct the position is needed

Orthogonal track $\vartheta = 0^\circ$ and $B \neq 0$
- Cluster size increases
 \rightarrow Charge distribution no more Gaussian
- Charge Centroid method fails
Combining Charge Centroid & μTPC methods

- Inclined tracks and/or magnetic field → Increase cluster size → The μTPC method can be used
- The drift gap is seen as a micro Time Projection Camber
- The spatial resolution can be improved using the Time information on each strip and the drift velocity

- μTPC takes into account the Lorentz angle to reconstruct the tracks with $B \neq 0$
- The Lorentz angle using Ar-iC_4H_{10} @ 1.5 kV/cm drift field is $\sim 26^\circ$
 In this region CC is more efficient. In the other regions μTPC is flat with a resolution ~ 130 μm

A combination of the two methods allows to keep the resolution stable in the full range of incident angles

Best worldwide Spatial Resolution for Triple GEM in high magnetic field
Beam test with the Cylindrical triple-GEM

- First beam test @ CERN with prototype of Layer-2
- 3 mm drift gap (new Layer with 5 mm is under assembly)
- Gas mixture Ar/CO₂ (70/30)
- X and V views, only X instrumented

Goals

- CGEM at 42° to test the performance along the longitudinal strip @ B = 1 T
- Comparison between cylindrical and planar GEM measurements
- Test the stability of the detector under beam conditions
- Test under high intensity pion beam

Cylindrical and Planar measurements

- Orthogonal tracks and B = 0 with Charge Centroid method
- Resolution of CGEM is in agreement with planar GEM → about 110 µm

Test under extreme conditions

- HV = 400 V for each GEM foil → gain 10⁵ → Stable
- High intensity beam → some ten of kHz/cm² → No current peaking problem

A second Cylindrical GEM layer is under test @ CERN in these days
Readout Electronics: TIGER ASIC

Our Aim: Spatial Resolution $\leq 130 \, \mu m \Rightarrow$ Analogue Readout is needed

Requirements

- Should provide Charge and Time measurements for Charge Centroid and μTPC modes and feature a fully-digital output
- Input charge: 1 – 50 fC
- Sensor Capacitance: up to 100 pF
- Rate per Channel: 60 kHz (safety factor of 4 included)
- Time resolution: 4-5 ns
- Power consumption $\sim 10 \, mW/channels$
- Should be radiation tolerant for Single Event Upset

A custom ASIC has been designed and developed TIGER (Torino Integrated GEM Electronics Readout)
TIGER Design

Front End
- Charge Sensitive Amplifier + two shapers (Time and Charge)

Time-based readout
- Single or double threshold readout
- Time stamp on rising/falling edge (sub-50 ps binning quad-buffered TDC)
- Charge measurement with Time-Over-Threshold

Time and amplitude sampling
- Time stamp on rising edge (sub-50 ps binning quad-buffered TDC)
- Sample-and-Hold circuit for peak amplitude sampling
 → Slow shaper output voltage is sampled and digitised with a 10-bit Wilkinson ADC

Back End
- TDC/ADC local controller
- on-chip bias and power management
- on-chip calibration circuitry

First silicon Tape-out
MPW in May 2016
Test on silicon started in Nov 2016

arXiv:1706.02267
TIGER preliminary tests

- T-branch Gain $\approx 10.4 \text{ mV/fC}$ in agreement with simulations
- RMS Noise $\approx 3.5 \text{ mV} @ 100 \text{ pF}$ 50% higher than simulations - RMS Jitter $\approx 3.7 \text{ ns}$ for $Q_{in} = 3 \text{ fC} @ 100 \text{ pF}$
- Charge measurement with S&H: linearity assessed

Electrical characterization
- Time-based readout working properly
- Charge measurement S&H linearity assessed
- Baseline dependence on Temp, due to bias conditions of holder circuit → minor revision needed
- Second Prototype not needed → Engineering Run within July 2017 → to produce 160 ASICs + Spares

Test with CGEM prototype
- First signals acquired with Cosmic rays and ^{90}Sr source – Data analysis ongoing
- Next step: test with conditions close to the final ones (HV system, cables, FEB, ...)

S&H linearity
External Test Pulser

T-branch Gain
Noise vs C_{in}
Conclusions and Outlook

- An innovative Cylindrical GEM detector with Charge and Time readout is under construction and test to replace the BESIII Inner tracker which is affected by ageing
- Performance and optimization of a planar GEM prototype have been studied under several conditions (HV, gas mixtures, fields)
- Combining Charge Centroid and µTPC modes, the spatial resolution is stable and results are beyond the state of the art for GEM detectors operated in B field
- A first Cylindrical GEM layer has been tested w/o B field and its performance is close to planar GEM
- A second Cylindrical GEM layer is ready and under test @ CERN in these days
- TIGER: a custom ASIC for analogue readout (featuring Charge and Time measurements) has been developed and it is under test with real CGEM signals with cosmic rays and 90Sr source
- TIGER engineering run is foreseen with minor revisions and different design flavours within this month
- Three CGEM layers will be tested with TIGER and will be ready for shipping in February 2018
- CGEM detector installation @ IHEP is planned in Summer 2018
GEM Technology

- XV segmented anode
- Readout strips (pitch, X, V) 650/570/130 µm

The GEM foils placed between anode and cathode provide a gain of \(\sim 10^3 - 10^4 \) at lower voltages \(\rightarrow \) lower discharge probability

- The signal depends on the gas mixture, the geometry and the applied fields
- High efficiency needs a gain of \(10^3 - 10^4 \), while safety standard requires a discharge probability below \(10^{-5} \)
Physics advantages using CGEM in BESIII

• Better analysis for final states with short life particles
• Better precision on secondary vertex reconstruction
• XV readout improves spatial resolution in z coordinate (2mm → 1mm)
• Triple-GEM technology shows higher resistance to high particle flux
• Triple-GEM technology shows lower aging effects

Vertex resolution of K^0_s and Λ particles improves between 2 and 3 times over the drift chamber
The Charge Centroid method

- The avalanche size depends on the gas diffusion, which is affected by E field and gas mixture
- A weighted average position is measured from the fired strips and its performance is better than the digital readout, which is limited by the strip pitch

Results with Orthogonal tracks and B = 0
- The charge distribution on the anode is Gaussian
 → Charge Centroid method

The best performance of CC method is achieved when the number of fired strip > 2
The Charge Centroid method

Inclined tracks and $B = 0$
- The cluster size increases and the charge distribution on the anode is no more Gaussian
 - Charge Centroid method fails
The Charge Centroid method

Inclined tracks and/or magnetic field increase the cluster size

A different method to reconstruct the position is needed
The µTPC method

• Inclined tracks and/or magnetic field → Increase cluster size → The µTPC can be used
• The drift gap is seen as a micro Time Projection Chamber
• The spatial resolution can be improved for inclined tracks and with $B \neq 0$
 using the Time information on each strip and the drift velocity

Knowing the drift velocity from Garfield simulation, a bi-dimensional point is assigned to each fired strip. These points are used to reconstruct the track in the conversion region.
• A linear fit is used to reconstruct the path and to measure the particle position
The µTPC method vs Charge Centroid

- Inclined tracks and/or magnetic field \rightarrow Increase cluster size \rightarrow The µTPC method can be used
- The drift gap is seen as a micro Time Projection Camber
- The spatial resolution can be improved using the Time information on each strip and the drift velocity

Comparing the two methods

A combination of Charge Centroid and µTPC methods is needed
Inclined tracks and $B \neq 0$

Two different effects can be observed:

- **focusing effect**: Lorentz & inclination angles concordant → smaller cluster size
- **de-focusing effect**: Lorentz & inclination angles discordant → bigger cluster size
Readout Electronics

- **ON-DETECTOR ELECTRONICS**
 - ~10 000 CHANNELS
 - TIGER-based Front End Electronics
 - 160 ASICs in 40+40 FEBs
 - 128 channels each
 - Data & Config LVDS
 - ~10 m
 - GEM ROC Readout Modules
 - 10+10 GEM ROCs

- **OFF-DETECTOR ELECTRONICS**
 - Monitoring and standalone DAQ
 - GbE link
 - Data & Config
 - Optical links
 - GEM DC Data Collector Modules
 - 2 DCs

• **ON-DETECTOR electronics**
 Front End boards located on the detector to preserve the S/N ratio

• **OFF-DETECTOR electronics**
 Readout Cards and Data Collector boards as close as possible to the detector