# A cold neutron beam facility for particle physics at the ESS G. Konrad<sup>1,2</sup>, H. Abele<sup>1</sup>, B. Märkisch<sup>3</sup>, F. Piegsa<sup>4</sup>, U. Schmidt<sup>5</sup>, C. Theroine<sup>3,6</sup>, T. Soldner<sup>7</sup>

<sup>1</sup>Atominstitut, TU Wien, Wien, Austria; <sup>2</sup>Stefan Meyer Institute, Vienna, Austria; <sup>3</sup>TU München, Garching, Germany; <sup>4</sup>Universität Bern, Bern, Switzerland; <sup>5</sup>Universität Heidelberg, Heidelberg, Germany; <sup>6</sup>ESS, Lund, Sweden; <sup>7</sup>Institut Laue-Langevin, Grenoble, France

Pulsed beams have tremendous advantages for precision experiments with cold neutrons. In order to minimise and measure systematic effects, they are used at continuous sources in spite of the related substantial decrease in intensity. At the pulsed neutron source ESS, such experiments will gain up to a factor of 30 in event rate, and novel concepts become feasible. Therefore, we propose ANNI, a cold neutron beam facility for particle physics, as



## **DESIGN CONSIDERATIONS**

Maximum statistics

cm<sup>2</sup>/s/sr/Å)

- Minimum systematics
- Versatile user instrumentation
  - $\rightarrow$  Fully exploit pulse structure
  - $\rightarrow$  Assure low background
  - $\rightarrow$  Optimize for beam quality
  - $\rightarrow$  Include polarization
  - $\rightarrow$  Provide flexibility
  - → Include **ep/n separator**



## CHOPPER SYSTEM (EXAMPLES)





### POLARIZATION

Three options, depending on optimization criteria of user experiment:

- 1. Moderate polarization at highest intensity Bender 2  $\rightarrow$  Polarizing bender
- 2. Highest polarization
  - Polarizing bender + bender in X-SM geometry (in beam preparation area)
- 3. Polarization with analytic wavelength dependence
- <sup>3</sup>He spin filter (in beam preparation area)

|                   |      |              | Pro  | POSED TIM | ELINE |      |                      |                 |
|-------------------|------|--------------|------|-----------|-------|------|----------------------|-----------------|
| 2019              | 2020 | 2021         | 2022 | 2023      | 2024  | 2025 | 2026                 | 2027            |
| Proposal<br>round |      | Construction |      |           |       |      | Hot<br>commissioning | User<br>program |

| BENCHMARKS                              |                      |                |              |  |  |  |
|-----------------------------------------|----------------------|----------------|--------------|--|--|--|
| Experiment                              | Facility             | Event<br>rate  | S/B          |  |  |  |
| NPDGamma                                | FnPB (SNS)           | 15             | 1            |  |  |  |
| PERC                                    | MEPHISTO<br>(FRM II) | 17<br>34 (PMC) | 1<br>1 (PMC) |  |  |  |
| PERKEO III                              | PF1B (ILL)           | 6<br>16 (PMC)  | 1<br>1 (PMC) |  |  |  |
| aSPECT                                  | PF1B (ILL)           | 1<br>0.4       | 3<br>10      |  |  |  |
| BeamEDM                                 | PF1B (ILL)           | 25             | 1            |  |  |  |
| World leading even at reduced ESS power |                      |                |              |  |  |  |

| EXPECTED PERFORMANCES           |                                                                                                                                      |  |  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PARAMETER                       | VALUE                                                                                                                                |  |  |  |  |  |
| Capture flux<br>full spectrum   | 5.4·10 <sup>10</sup> n/(cm <sup>2</sup> s) at guide exit<br>1.8·10 <sup>10</sup> n/(cm <sup>2</sup> s) at start of experimental area |  |  |  |  |  |
| Capture flux<br>2 – 8 Å (FOCs)  | 4.0·10 <sup>10</sup> n/(cm <sup>2</sup> s) at guide exit<br>1.4·10 <sup>10</sup> n/(cm <sup>2</sup> s) at start of experimental area |  |  |  |  |  |
| Particle flux<br>@ 8.9 Å        | 5.8·10 <sup>8</sup> / (cm <sup>2</sup> sÅ) at start of experimental area (with additional guide in beam definition area)             |  |  |  |  |  |
| Divergence<br>distribution FWHM | 42 mrad horizontal<br>22 mrad vertical                                                                                               |  |  |  |  |  |
| Instantaneous<br>bandwidth      | 0.43 Å                                                                                                                               |  |  |  |  |  |



E. Klinkby, T. Soldner, J. Phys.: Conf. Ser. [ECNS2015] (2016), accepted. [7] A. Kozela et al., Phys. Rev. C 85, 045501 (2012). [8] J. Kozaczuk et al., Phys. Rev. D 86, 096001(2012). [9] F.M. Piegsa, Phys. Rev. C 88, 045502 (2013). [10] C. Theroine et al., ESS instrument construction proposal ANNI, 2015.