

Contribution ID: 772

Type: Poster Presentation

Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

Utilizing powerful nuclear reactors as anti-neutrino sources, high mountains to provide ample shielding from cosmic rays in the vicinity, and functionally identical detectors with large target volume for near-far relative measurement, the Daya Bay Reactor Neutrino Experiment has achieved unprecedented precision in measuring the neutrino mixing angle θ_{13} and the neutrino mass squared difference $|m_{ee}^2|$. I will report the latest Daya Bay results on neutrino oscillations, based on more than 2.5 million $\bar{\nu}_e$ inverse beta-decay interactions observed from the combination of 217 days of operation of six antineutrino detectors with a subsequent 1013 days using the complete configuration of eight detectors.

Experimental Collaboration

The Daya Bay Collaboration

Primary authors: Prof. CHU, Ming-chung (The Chinese University of Hong Kong); ON BEHALF OF THE

DAYA BAY COLLABORATION

Presenter: Prof. CHU, Ming-chung (The Chinese University of Hong Kong)

Session Classification: Poster session

Track Classification: Neutrino Physics