Charmonium production in p-Pb collisions
with ALICE at the LHC

Biswarup Paul
INFN Torino (Italy)
On behalf of the ALICE Collaboration

EPS Conference on High Energy Physics, Venice, Italy
July 5th – July 12th 2017
Charmonium studies in p-Pb collisions in ALICE.

→ Run-1 results in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

→ Run-2 results in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

The results are available in:
CERN-ALICE-PUBLIC-2017-001 and CERN-ALICE-PUBLIC-2017-007
Physics motivation

- On top of the hot matter mechanisms in AA collisions, other effects, related to cold nuclear matter (CNM), might affect quarkonium production:
 - Nuclear parton shadowing/color glass condensate
 - Energy loss
 - $c\bar{c}$ break-up in nuclear matter

- CNM are investigated in pA collisions, addressing:
 - Role of the various contributions, whose importance depends on kinematic and energy of the collisions.
 - Size of CNM effects to disentangle hot and cold nuclear matter effects in AA collisions to interpret quarkonium AA results.
Quarkonium in ALICE can be measured in two ways:

Central Barrel: \(J/\psi \rightarrow e^+e^- \)
(\(|y| < 0.9 \))

Electrons tracked using ITS and TPC
Particle identification: TPC (+TOF)

Forward muon arm: \(J/\psi \rightarrow \mu^+\mu^- \)
(\(2.5 < y < 4 \))

Muons identified and tracked in the muon spectrometer

- Acceptance coverage in both \(y \) regions down to zero \(p_T \)
- The ALICE results presented in this talk refer to inclusive \(J/\psi \).
Quarkonium in ALICE can be measured in two ways:

Central Barrel: \(J/\psi \rightarrow e^+e^- \)
(\(|y| < 0.9 \))

Electrons tracked using ITS and TPC
Particle identification: TPC (+TOF)

Forward muon arm: \(J/\psi \rightarrow \mu^+\mu^- \)
(2.5 < \(y \) < 4)

Muons identified and tracked in the muon spectrometer

p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) and 8.16 TeV

ALICE data are collected with two beam configurations:
p-Pb and Pb-p, with \(\Delta y = 0.465 \)

- **Forward rapidity**
 \(2.03 < y_{\text{cms}} < 3.53 \)

- **Mid rapidity**
 \(-1.37 < y_{\text{cms}} < 0.43 \)

- **Backward rapidity**
 \(-4.46 < y_{\text{cms}} < -2.96 \)
J/ψ R_{pPb} vs y_{cms} and p_T at $\sqrt{s_{NN}} = 5.02$ TeV

- Clear J/ψ suppression at forward rapidity, and compatible with unity at backward rapidity.
- The R_{pPb} increases with p_T at forward and mid rapidity and shows a weaker p_T dependence at backward rapidity.
- The suppression behavior of J/ψ is compatible with CNM based on shadowing and/or energy loss models.
$\psi(2S)$ suppression is stronger than the J/ψ one.

Theoretical predictions (based on shadowing and energy loss) can not describe the stronger $\psi(2S)$ suppression.

This strong $\psi(2S)$ suppression is possibly due to final-state effects.
At forward rapidity, the J/ψ and $\psi(2S)$ Q_{pPb} show a similar decreasing pattern.

At backward rapidity, Q_{pPb} behavior are different, with the $\psi(2S)$ significantly more suppressed for largest centrality.

$\psi(2S)$ behaviour can be interpreted if models include final-state effect.
J/ψ R_{pPb} vs y_{cms} and p_T at $\sqrt{s_{NN}} = 8.16$ TeV

- Clear J/ψ suppression at forward rapidity, and compatible with unity at backward rapidity.
- Compatible R_{pPb} at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV even if x_F coverage is slightly different.
- p_T coverage extended up to 20 GeV/c in Run-2.
- R_{pPb} increases with p_T at forward rapidity and shows a weaker dependence at backward rapidity.
- In Run-2 we have increased the precision on the results.
J/ψ R_{pPb} compared to models at $\sqrt{s_{NN}} = 8.16$ TeV

- Good agreement between data and models based on shadowing and/or energy loss, as at $\sqrt{s_{NN}} = 5.02$ TeV.

- Theoretical uncertainties still limit a more quantitative comparison.
Higher luminosity collected at $\sqrt{s_{NN}} = 8.16$ TeV allows a finer binning with respect to $\sqrt{s_{NN}} = 5.02$ TeV.

Q_{pPb} decreases with N_{coll} at forward rapidity while an opposite trend is observed in backward rapidity.

Similar pattern at both energies, slightly lower values at $\sqrt{s_{NN}} = 8.16$ TeV but compatible within the uncertainties.
Charmonium production has been measured in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) and 8.16 TeV.

\(J/\psi \) shows a suppression with a strong kinematic dependence, with a similar pattern at the two centre-of-mass energies.

Theoretical models based on shadowing and/or energy loss are in fair agreement with data.

New \(J/\psi \) results in p-Pb collisions at \(\sqrt{s_{NN}} = 8.16 \) TeV are shown as a function of centrality. They confirm, at both forward and backward rapidity, the trend observed at \(\sqrt{s_{NN}} = 5.02 \) TeV, with an increased precision.

\(\psi(2S) \) shows a stronger suppression than \(J/\psi \), possibly due to final-state effects.
Thank you
p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

→ Results from 2016 data set, based on dimuon triggered events

→ J/ψ yield extracted fitting the opposite sign dimuon invariant mass spectrum.
→ Signal is extracted with a extended Crystal Ball function or a pseudo-Gaussian function. Background: phenomenological fits of the invariant mass spectrum.
→ Results obtained with different techniques are combined to extract $<N_{J/\psi}>$ and to evaluate systematic uncertainties.
J/ψ Q_{pPb} vs centrality at $\sqrt{s_{NN}} = 8.16$ TeV

ALICE
Inclusive $J/\psi \rightarrow \mu^{+}\mu^{-}$, $2.03 < y_{\text{cms}} < 3.53$

- p--Pb $\sqrt{s_{NN}} = 8.16$ TeV (preliminary)
- p--Pb $\sqrt{s_{NN}} = 5.02$ TeV (JHEP 11 (2015) 127)

ALICE
Inclusive $J/\psi \rightarrow \mu^{+}\mu^{-}$, $-4.46 < y_{\text{cms}} < -2.96$

- p--Pb $\sqrt{s_{NN}} = 8.16$ TeV (preliminary)
- p--Pb $\sqrt{s_{NN}} = 5.02$ TeV (JHEP 11 (2015) 127)