Charmonium production in p-Pb collisions with ALICE at the LHC

Biswarup Paul
INFN Torino (Italy)
On behalf of the ALICE Collaboration

EPS Conference on High Energy Physics, Venice, Italy July 5th – July 12th 2017

Outline

- Charmonium studies in p-Pb collisions in ALICE.
 - → Run-1 results in p-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
 - → Run-2 results in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV
- The results are available in: CERN-ALICE-PUBLIC-2017-001 and CERN-ALICE-PUBLIC-2017-007

Physics motivation

- On top of the hot matter mechanisms in AA collisions, other effects, related to cold nuclear matter (CNM), might affect quarkonium production:
 - → Nuclear parton shadowing/color glass condensate
 - → Energy loss
 - \rightarrow cc break-up in nuclear matter
- CNM are investigated in pA collisions, addressing:
 - → Role of the various contributions, whose importance depends on kinematic and energy of the collisions.
 - → Size of CNM effects to disentangle hot and cold nuclear matter effects in AA collisions to interpret quarkonium AA results.

Quarkonium measurements in ALICE

→ Quarkonium in ALICE can be measured in two ways:

Central Barrel: $J/\psi \rightarrow e^+e^-$ (|y| < 0.9)

Electrons tracked using ITS and TPC Particle identification: TPC (+TOF)

Forward muon arm: $J/\psi \rightarrow \mu^+\mu^-$ (2.5 < y < 4)

Muons identified and tracked in the muon spectrometer

- \rightarrow Acceptance coverage in both y regions down to zero $p_{\rm T}$
- The ALICE results presented in this talk refer to inclusive J/ψ.

p-Pb collisions in ALICE

→ Quarkonium in ALICE can be measured in two ways:

Central Barrel:
$$J/\psi \rightarrow e^+e^-$$
 (|y| < 0.9)

Electrons tracked using ITS and TPC Particle identification: TPC (+TOF)

Forward muon arm:
$$J/\psi \rightarrow \mu^+\mu^-$$
 (2.5 < y < 4)

Muons identified and tracked in the muon spectrometer

- \rightarrow p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV
- \rightarrow ALICE data are collected with two beam configurations: p-Pb and Pb-p, with Δy = 0.465

Forward rapidity

Mid rapidity

Backward rapidity

$\overline{\text{J/}\psi R_{\text{pPb}}} \text{ vs } y_{\text{cms}} \text{ and } p_{\text{T}} \text{ at } \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$

EPS09 NLO (Vogt)

Eloss with $q_0 = 0.075 \text{ GeV}^2/\text{fm}$ (Arleo et al.)

EPS09 NLO + Eloss with $q_0 = 0.055 \text{ GeV}^2/\text{fm}$ (Arleo et al.)

 $p_{\perp}(\text{GeV}/c)$

CGC (Fujii et al.)

 $-1.37 < y_{cms} < 0.43$

inclusive $J/\psi \rightarrow e^+e^-$

2

 $-1.37 < y_{cms} < 0.43$

Clear J/ψ suppression at forward rapidity, and compatible with unity at backward rapidity.

The $R_{\rm pPb}$ increases with $p_{\rm T}$ at forward and mid rapidity and shows a weaker $p_{\rm T}$ dependence at backward rapidity.

The suppression behavior of J/ψ is compatible with CNM based on shadowing and/or energy loss models.

JHEP 06 (2015) 55

1.2

8.0

0.6

0.4

0.2

$\psi(2S)$ R_{pPb} vs y_{cms} and p_{T} at $\sqrt{s_{NN}} = 5.02$ TeV

JHEP 12 (2014) 073

- $\psi(2S)$ suppression is stronger than the J/ ψ one.
- Theoretical predictions (based on shadowing and energy loss) can not describe the stronger $\psi(2S)$ suppression.
- This strong $\psi(2S)$ suppression is possibly due to final-state effects.

J/ψ and ψ(2S) Q_{pPb} vs centrality at $\sqrt{s_{NN}} = 5.02$ TeV

- At forward rapidity, the J/ ψ and $\psi(2S)$ $Q_{pPb}^{\text{LI-PUB}}$ show a similar decreasing pattern.
- At backward rapidity, Q_{pPb} behavior are different, with the $\psi(2S)$ significantly more suppressed for largest centrality.
- $\psi(2S)$ behaviour can be interpreted if models include final-state effect.

J/ψ R_{pPb} vs y_{cms} and p_{T} at $\sqrt{s_{\text{NN}}} = 8.16$ TeV

- Clear J/ ψ suppression at forward rapidity, and compatible with unity at backward rapidity.
- Compatible R_{pPb} at $\sqrt{s_{\text{NN}}} = 5.02$ and 8.16 TeV even if x_{F} coverage is slightly different.
- $p_{\rm T}$ coverage extended up to 20 GeV/c in Run-2.
- $R_{\rm pPb}$ increases with $p_{\rm T}$ at forward rapidity and shows a weaker dependence at backward rapidity.
- In Run-2 we have increased the precision on the results.

 CERN-ALICE-PUBLIC-2017-001

J/ψ R_{pPb} compared to models at $\sqrt{s_{NN}}$ = 8.16 TeV

CERN-ALICE-PUBLIC-2017-001

- Good agreement between data and models based on shadowing and/or energy loss, as at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$.
- Theoretical uncertainties still limit a more quantitative comparison.

J/ ψ Q_{pPb} vs centrality at $\sqrt{s_{NN}}$ = 8.16 TeV

- Higher luminosity collected at $\sqrt{s_{NN}}$ = 8.16 TeV allows a finer binning with respect to $\sqrt{s_{NN}}$ = 5.02 TeV.
- Q_{pPb} decreases with N_{coll} at forward rapidity while an opposite trend is observed in backward rapidity.
- Similar pattern at both energies, slightly lower values at $\sqrt{s_{\text{NN}}}$ = 8.16 TeV but compatible within the uncertainties.

Conclusions

- \rightarrow Charmonium production has been measured in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV.
- \rightarrow J/ ψ shows a suppression with a strong kinematic dependence, with a similar pattern at the two centre-of-mass energies.
- → Theoretical models based on shadowing and/or energy loss are in fair agreement with data.
- New J/ ψ results in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV are shown as a function of centrality. They confirm, at both forward and backward rapidity, the trend observed at $\sqrt{s_{NN}} = 5.02$ TeV, with an increased precision.
- $\rightarrow \psi(2S)$ shows a stronger suppression than J/ ψ , possibly due to final-state effects.

Thank you

NEW!!

p-Pb collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

→ Results from 2016 data set, based on dimuon triggered events

- \rightarrow J/ ψ yield extracted fitting the opposite sign dimuon invariant mass spectrum.
- → Signal is extracted with a extended Crystal Ball function or a pseudo-Gaussian function. Background: phenomenological fits of the invariant mass spectrum.
- \rightarrow Results obtained with different techniques are combined to extract $\langle N_{J/\psi} \rangle$ and to evaluate systematic uncertainties.

J/ψ Q_{pPb} vs centrality at $\sqrt{s_{NN}}$ = 8.16 TeV

