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Figure: Evolution of curvature perturbation on comoving slices in theAntonio Enea Romano
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The definition of adiabaticity used in theory of cosmological
perturbations (CPT)comes from the thermodynamics of a
fluid admitting an equation of state P(ρ,S),

δP =
∂P
∂ρ

∣

∣

∣

S
δρ+

∂P
∂S

∣

∣

∣

ρ
δS (1)

For an adiabatic fluid, also known as barotropic or
isentropic fluid, we have an equation of state P(ρ)
independent of the entropy S so that

δPad = c2
wδρ , c2

w ≡
∂P
∂ρ

∣

∣

∣

S
=

P ′

0

ρ′0
(2)

where the subscript 0 stands for background quantities,
and the prime denotes derivative respect to time. Adiabatic
perturbations move with the speed of sound cw , also called
adiabatic speed of sound.
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It is natural to define the non-adiabatic pressure as

δPnad ≡ δP − c2
wδρ = δPδρ=0 =

∂P
∂S

∣

∣

∣

ρ
δS, (3)

which is gauge invariantand vanishes by construction for
a perfect fluid. Note that it coincides with δPδρ=0, and for
this reason conservations laws for adiabatic perturbations,
i.e. satisfying δnad = 0, are conveniently derived in the
uniform density gauge. There are some important
exceptions though!
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Scalar metric perturbation

Metric perturbation can be classified according to their
behavior under spatial rotations as scalar, vector, and
tensor

According to inflation theory primordial scalar
perturbations the seeds of the CMB temperature
anisotropy and of large structure formation

We set the perturbed metric as

ds2 = a2
[

−(1 + 2A)dη2 + 2∂jBdx jdη

+
{

δij(1 + 2R) + 2∂i∂jE}dx idx j
}]

, (4)
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Perturbed energy-momentum tensor

The perturbed energy-momentum tensor cab written as

T 0
0 = −(ρ+ δρ) , T 0

j = (ρ+ P)u0uj =
ρ+ P

a
uj ,

T i
j = (P + δP)δi

j + Πi
j ; Πk

k ≡ 0 . (5)

For a scalar perturbations

uj = −a∂j(v − B) → T 0
j = −(ρ+ P)∂j(v − B)

(6)

Πk
j in the form can be written as

Πij = δikΠ
k

j =

[

∂i∂j −
1
3
δij

(3)
∆

]

Π , (7)

where ∆(3) = δij∂i∂j .
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Gauge invariant variables

The following gauge-invariant variables are relevant to set
the initial conditions before inflation:

Rc ≡ R−H(v − B) , (8)

ζ ≡ R−
H

ρ′
δρ = R+

δρ

3(ρ+ P)
, (9)

Vf ≡ (v − B)−
R

H
. (10)
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Geometrical meaning of gauge invariant variables

Rc is the curvature perturbation on comoving slices
(v − B = 0)

ζ is the curvature perturbation on uniform density slices
(δρ = 0)

Vf is the velocity potential on flat slices (R = 0)

They are related to each other as

Rc = −HVf , (11)

ζ ≡ Rud = Rc +
δρc

3(ρ+ P)
. (12)
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Conservation of the perturbed energy
momentum-tensor in the comoving gauge

In the comoving slices gauge, v − B = 0 (⇔ T 0
j = 0)

δ(∇µTµ
j) = 0 implies

(ρ+ P)Ac + δPc +
2
3
∇2Π = 0 . (13)

If the perturbation is isotropic, by definition Π = 0. Thus we
find

δPc = −(ρ+ P)Ac . (14)

Note that this relation between δPc and Ac is completely
independent of the theory of gravity.
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The case of general relativity

Gravity theory independent synchronous, comoving,
and uniform density gauge coincidence

Combining the definition of δPnad with δPc = −(ρ+ P)Ac

and defining the sound speed of perturbations cs we get

δPc = c2
s δρc (15)

δPnad = (c2
s − c2

w )δρc =
c2

w − c2
s

c2
s

(ρ+ P)Ac . (16)

(17)

For adiabatic perturbations the synchronous(A = 0),
uniform density(δρ = 0) and comoving gauge can
coincide

{δPnad ≈ 0, cs 6= cw} ⇒ δρc ≈ Ac ≈ 0 . (18)
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The case of general relativity

Implications for CMB anisotropy spectrum calculation

This is why numerical codes such as CAMB which solve
the perturbed Boltzman equations to calculate the CMB
anisotropy spectrum use the synchronous gauge but the
initial conditions are set using the spectrum for primordial
curvature perturbations on comoving slices Rc . In fact
for standard slow-roll attractor models we have cs 6= cw .
For example for a minimally coupled scalar field one has

c2
w = −1 +

2ǫ
3

−
η

3
, c2

s = 1, (19)

with ǫ, η the usual slow-roll parameters.

But what happens when cs = cw ?

Antonio Enea Romano



Adiabaticity
Cosmological perturbations

Gravity independent conservation laws for adiabatic perturbations
Globally adiabatic models

The case of general relativity

Gravity independent relation between Rc and ζ

Combining the relation for δρc , with the gauge
transformation from uniform density to the comoving slices
gauge we get another important relation which is
independent of the gravity theory

ζ = Rc −
H
ρ̇
δρc = Rc + δPnad

H
ρ̇(c2

w − c2
s )

(20)

When cs 6= cw , as in attractor slow-roll models, adiabaticity
implies that Rc = ζ.
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The case of general relativity

General relativity case for generic matter field

In general relativity the perturbed Einstein’s equations in
the comoving slices gauge give for the G0

i -component

R′

c = HAc (21)

which combined with the equation for δPnad gives the
important relations

δPnad =

[

(

cw

cs

)2

− 1

]

(ρ+ P)
Ṙc

H
(22)

ζ = Rc −
Ṙc

3c2
s H

. (23)

Thus δPnad = 0 if either c2
w = c2

s or Ṙc = 0. In particular in
the latter case, Ṙc = 0, we have ζ = Rc .

Antonio Enea Romano



Adiabaticity
Cosmological perturbations

Gravity independent conservation laws for adiabatic perturbations
Globally adiabatic models

The case of general relativity

Relation with previous results

We can immediately deduce that in general relativity there
are two possible scenarios for the non-conservation of Rc ,

(1) c2
s = c2

w , δPnad = 0

(2) c2
s 6= c2

w , δPnad 6= 0

The first case corresponds to globally adiabatic (GA)
models because c2

s = c2
w ↔ δPnad = 0 on any scale

The second case is the standard slow-roll inflation for
example, where on superhorizon scales ζ = Rc and they
are both conserved if δPnad = 0, but only on
super-horizon scales
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The case of general relativity

Relation with previous results

Demanding δ(∇µTµ
0 ) = 0 yields, in the uniform density

slicing (astro-ph/0003278)

ζ ′ = −
HδPnad

(ρ+ P)
+

1
3

(3)
∆

(

v − E ′
)

ud (24)

The usual interpretation of the above equation is that for
adiabatic perturbations, ζ is conserved on
super-horizon scales, as long as the gradient terms
can be neglected.

As we have proved, when cs = cw this is not necessarily
true anymore, and indeed neglecting the gradient terms
may not be justified, as for example happens in ultra-slow
inflation(USR).
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The case of general relativity

Ultra-slow inflation

Ultra-slow inflation is a single scalar field minimally coupled
model with standard kinetic term and constant potential
The density and pressure perturbations are equal to each
other, δP = δρ, in arbitrary gauge.

L = X + V0 , X = 1
2gµν∂

µφ∂νφ

Therefore we have

c2
w − c2

s = δPnad = 0 , φ̇ ∝ a−3 (25)

ǫ ≡ −
Ḣ
H2 =

φ̇2

2H2 ∝ a−6 , η ≡
ǫ̇

Hǫ
= −6 (26)
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The case of general relativity

Super-horizon growth of curvature perturbations for Rc

In this case adiabaticity does not imply the conservation of
Rc neither of ζ, and they can differ from each other
because

ζ = Rc + δPnad
H

ρ̇(c2
w − c2

s )
(27)

δPnad =

[

(

cw

cs

)2

− 1

]

(ρ+ P)
Ṙc

H
(28)

On super horizon scales we get The superhorizon solution
for Rc is then

Rc = c1

(

1 +O(k2)
)

+ c2a3
(

1 +
1
2

k2

H2 +O(k4)

)

. (29)
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The case of general relativity

Super-horizon growth of curvature perturbations for ζ

Inserting this into the equation relating Rc and ζ we get

ζ = c1

(

1 +O(k2)
)

+
c2a3

3

(

k2

H2 +O(k4)

)

. (30)

Thus we see that the time-dependent solution grows like a
even on superhorizon scales. More specifically,
ζ(t) ≈ ζ(tk )a(t)/a(tk ) where tk is the horizon crossing time
a(tk ) = kH of the wavenumber k .
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Inversion method to find models violating
super-horizon curvature perturbations

We have developed an inversion method to find new
models exhibiting super-horizon growth of curvature
perturbations based on the equivalence between
K-inflation globally adiabatic models (GA) and barotropic
fluids.

Imposing conditions on ǫ(a) we have found the
corresponding equation of state for the barotropic fluid
admitting such a background behavior and the
correspondent equivalent scalar field Lagrangian,
obtaining an infinite class of models which do no conserve
curvature perturbations
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Inversion method to find models violating
super-horizon curvature perturbations

These single scalar field models do not satisfy the
non-Gaussianity consistency conditions

They could have large local shape fNL, while satisfying
other observational constraints such the spectral index,
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From the equation for the curvature perturbation on
comoving slices

∂

∂t

(

a3ǫ

c2
s

∂

∂t
Rc

)

− aǫ∆Rc = 0 , (31)

we can deduce, after re-expressing the time derivative in
terms of the derivative respect to the scale factor a, that on
superhorizon scales there is (apart from a constant
solution) a solution of the form,

Rc ∝

∫ a da
a

f (a) ; f (a) ≡
c2

s (a)
Ha3ǫ(a)

, (32)
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Constructing GA models

ǫ = −
Ḣ
H2 =

3
2
ρ+ P
ρ

. (33)

In terms of the scale factor and ǫ the energy conservation
equation reads

dρ
da

+
3
a
(ρ+ p) =

dρ
da

+
2ǫρ
a

= 0. (34)

We may now define the quantity b(a) = 2ǫρ. The function
f (a) can be re-written in terms of it as

f (a) ∝
Hc2

s

a3b(a)
. (35)
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It is possible to associate any barotropic perfect fluid with
an equivalent K-inflation model with L = P(Y ) such that
cs = cw according to ( arXiv:1002.1376)

2
∫ P du

F (u)
= log(Y ) , (36)

F (P) = ρ(P) + P (37)

Y = g(φ)X , X =
1
2

gµν∂
µφ∂νφ
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Examples

Generalized Ultra-slow inflation : 2ǫρ = b(a) ∝ a−n

L = P(Y ) = Y n/(2n−6) − V0 . (38)

Lambert Inflation : ǫ =∝ a−n

L = ρ0

(

n − 3
3

W (Y )− 1
)

exp
[

n − 3
n

W (Y )

]

− V0

h(z) = zez , z = h−1(zez) ≡ W (zez)

Y = Xg(φ)
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Globally adiabatic inflationary models

They can be an alternative to attractor models

These single scalar field models do not satisfy the
non-Gaussianity consistency conditions and could have
large local shape fNL, while satisfying other observational
constraints such the spectral index, and could be an
alternative to attractor models

Adiabatic perturbations are not always conserved, and
on the contrary, GA models are good candidates for the
violation of curvature perturbations on super-horizon
scales together with non adiabatic models
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