# Machine and deep learning techniques in heavy-ion collisions with ALICE

Rüdiger Haake (CERN) for the ALICE collaboration

(06.07.2017) EPS-HEP 2017, Venice, Italy









# b-jet tagging

# Dielectron identification

# b-jet tagging



# b-jets with the ALICE detector



- Main interest of heavy-ion physics: Quark-Gluon Plasma (QGP)
- Hot & dense medium, strongly interacting w/ high-energy partons
- Jet measurement with ALICE down to low  $p_{\scriptscriptstyle T}$
- Modification of b-jets different to udsg-jets
  - Larger energy loss for gluons than quarks (color charge)
  - "Dead cone effect": For massive quarks, gluon bremsstrahlung suppressed at smaller angles w.r.t. parton direction
    - → b-jets interesting probe for the QGP

Goal: Investigate parton energy loss mechanisms

- Here: Evaluation for p-Pb collisions as first step towards Pb-Pb collisions
  - Useful to study cold nuclear matter effects
  - Reference measurement for Pb-Pb collisions





# b-jet identification



- B-hadrons decay in the (sub-)millimeter range ( $c\tau \sim 500 \ \mu \text{m}$ ),
  - → displaced from primary vertex
- Common discriminators:
  - Reconstructed secondary vertices
  - Track impact parameters
- Secondary vertex reconstruction:
  - Here: All three-track combinations considered (3-prong vertices)

#### "Conventional" approach:

Application of rectangular cuts on properties of most displaced vertices



http://bartosik.pp.ua/hep\_sketches/btagging

Ansatz here: Apply ML techniques to several low-level inputs: Constituents, secondary vertices, track impact parameters



# Model design & input features



- Binary classification problem: b-jet tagging
- General design: Multibranched, multilayered neural network
  - Multiple subnetworks on several features:
     1D convolutional networks (CNNs)
  - Merged output fed to multilayered fully-connected network
  - Keras¹ has been used for model creation & training
- Tested many different networks on different features

#### **Features**

- Array of secondary vertices, each:
  - (x, y, z) rel. to primary vertex
  - Transverse plane distance & uncertainty:  $L_{\rm xy}$ ,  $\sigma_{\rm xy}$
  - Vertex track dispersion  $\sigma_{_{
    m vtx}}$ , fit quality  $\chi^2$
- Array of constituents:  $\eta$ ,  $\varphi$ , r (relative to jet axis), track impact parameters D, Z, and  $j_{\scriptscriptstyle T}$

<sup>1</sup>F. Chollet et al., https://github.com/fchollet/keras



## Simulation dataset



- p-Pb  $\sqrt{s_{NN}}$  = 5.02 TeV, PYTHIA6 + HIJING
- FastJet anti- $k_{\tau}$  jets, R = 0.4, tracks only, bgrd. corr.
- 200k training, 50k validation samples
- True jet type set with particle level information:

- B-hadron within R = 0.4:
  - → b-jet
- If instead, C-hadron within R = 0.4:
  - → c-jet
- Else:
  - → light-flavor jet

Heavy-flavour hadron found in range → Tag as HF-jet





## Results: Mistagging vs. b-jet efficiency





- Solid lines:

   ML-based method
   (statistical uncertainty only)
- Dashed lines: Conventional, cutbased method<sup>1</sup>

- ML-assisted tagging method very promising
- Mistagging efficiency much lower for c- and udsg-jets

<sup>1</sup> cf. arXiv:1605.00143



# Results: Mistagging efficiency vs. jet $p_T$





- Solid symbols:
   ML-based method
   (statistical uncertainty only)
- Open symbols: Conventional, cutbased method¹
- b-jet efficiency fixed (red)

Also here: ML-assisted tagging method very promising

<sup>1</sup> cf. arXiv:1605.00143



# Results: Mistagging efficiency vs. jet $p_T$





- Mistagging efficiency for higher b-jet efficiency
- Solid symbols: c-efficiency
- Open symbols: udsg-efficiency

- Sample mostly udsg. About 90% udsg-, 5% c-jets
  - → udsg efficiency should be below 0.5-1%
  - → c efficiency should be below a 5-10%
- Higher b-jet efficiencies possible



# Training control plots







- Accuracy, loss good control parameters
- Model shows slow learning up to high epoch counts
- Learning rate parameter has been lowered after 200 epochs: [10<sup>-4</sup>, 10<sup>-5</sup>]
- Not much to gain with longer training



# Training control plots





- Accuracy, loss good control parameters
- Model shows slow learning up to high epoch counts
- Learning rate parameter has been lowered after 200 epochs: [10<sup>-4</sup>, 10<sup>-5</sup>]
- Not much to gain with longer training





# Training control plots







- Accuracy, loss good control parameters
- Model shows slow learning up to high epoch counts
- Learning rate parameter has been lowered after 200 epochs: [10<sup>-4</sup>, 10<sup>-5</sup>]
- Not much to gain with longer training
- AUC = Area Under ROC Curve
- AUC reveals slow, but constant learning up to 220 epochs
- Clearly separated score distribution

# **Dielectrons**



### Dielectron classification



- Dielectrons created at all stages of collision
- Negligible interaction after creation
   Interesting probe for QGP

- Here: Focus on low-mass e<sup>+</sup>e<sup>-</sup> identification
- Main goal of dielectron classification analysis:
   Reject background efficiently



### Dielectron classification



- Sample is contaminated w/ combinatorial &  $\gamma$ -conversion pairs
- Use two neural networks to classify background
  - (1) Pairs from conversion
  - (2) Pairs with one electron from photon conversion Fully-connected, multilayered networks
- Cut such that signal is most significant





### Dielectron classification



- Sample is contaminated w/ combinatorial & y-conversion pairs
- Use two neural networks to classify background
  - (1) Pairs from conversion
  - (2) Pairs with one electron from photon conversion Fully-connected, multilayered networks
- Cut such that signal is most significant



# Very promising gain in significance



## On top: Improved electron identification



- Electron identification using several subdetectors in ALICE Measurement of  $n\sigma$ 's: How many standard deviations away from mean expected value
- MVA approach: Use Boosted Decision Tree (BDT) on  $n\sigma$  values, track properties
- Performance evaluated in pp. Soon: PbPb

#### $n\sigma$ distribution for electrons TPC:



# Summary





# b-jet tagging

- Deep learning tagging method has been developed
- Performance evaluated in p-Pb MC simulations and compared to cut-based method
- Results are very promising
  - Tagging method allows much higher b-jet efficiencies
  - Lower mistagging rates
- Application on p-Pb data ongoing → promising results
- In addition: c-jet tagging to be explored





#### Low-mass dielectron classification

- Applied BDT to electron identification in pp, soon Pb-Pb
- Applied NN to classify dielectron background in Pb-Pb
- Very promising performance in MC simulations
- Electron identification in PbPb
- Application on pp, p-Pb, and Pb-Pb LHC Run 2 data

### Several other ML-based analyses in ALICE ...

For example, this morning at EPS-HEP:
 Charmed mesons & baryons pp & pPb (A. De Caro)



Thank you for your attention!

# Backup



# The ALICE detector







# MC-data adaption



- Method strongly relies on accuracy of MC
- Ansatz: Change MC such that it better reproduces data in our feature space
  - Find differences: Use GBDT classifier to generate MC & data
  - Cure differences: Reweight regions in feature-space to have same effective population in MC & data
- Using MC-data adaption leads to significantly better results



ROC curve of classifier: After reweighting, data and MC are hardly to separate in feature space

(A. Rogozhnikov, 1608.05806)

























# b-jets: Simulation dataset II



- Strictly separated samples for training, validation, and testing
- 200'000 (training), 50'000 (validation) for each class
  - Signal class: 100% b-jets
  - Background class: 10% c-jets & 90% udsg-jets

Note: This is for the network to adjust better to udsg-jets. The impact of using different percentages is small

- Testing statistics is higher:
  - ~1.8M udsg-jets, ~500k c-jets, 580k b-jets

