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Talk outline

b-jet tagging

Dielectron identification
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b-jets with the ALICE detector

● Main interest of heavy-ion physics: Quark-Gluon Plasma (QGP)
● Hot & dense medium, strongly interacting w/ high-energy partons
● Jet measurement with ALICE down to low p

T

● Modification of b-jets different to udsg-jets
● Larger energy loss for gluons than quarks (color charge)
● “Dead cone effect”: For massive quarks, gluon bremsstrahlung 

suppressed at smaller angles w.r.t. parton direction
→ b-jets interesting probe for the QGP

Goal: Investigate parton energy loss mechanisms

p208Pb
● Here: Evaluation for p-Pb collisions as first 

step towards Pb-Pb collisions
● Useful to study cold nuclear matter effects
● Reference measurement for Pb-Pb collisions
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b-jet identification

http://bartosik.pp.ua/hep_sketches/btagging

● B-hadrons decay in the (sub-)millimeter range 
(cτ ~ 500 μm),
→ displaced from primary vertex

● Common discriminators:
● Reconstructed secondary vertices
● Track impact parameters

● Secondary vertex reconstruction:
● Here: All three-track combinations considered 

(3-prong vertices)

“Conventional” approach:
Application of rectangular cuts on  
properties of most displaced vertices

Ansatz here: Apply ML techniques to several low-level inputs: 
Constituents, secondary vertices, track impact parameters
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Model design & input features

● Binary classification problem: b-jet tagging
● General design: Multibranched, multilayered neural network

● Multiple subnetworks on several features:
1D convolutional networks (CNNs)

● Merged output fed to multilayered fully-connected network
● Keras1 has been used for model creation & training

● Tested many different networks on different features

Features
● Array of secondary vertices, each:

● (x, y, z) rel. to primary vertex
● Transverse plane distance & uncertainty: L

xy
, σ

xy

● Vertex track dispersion σ
vtx

, fit quality χ2

● Array of constituents: η, φ, r (relative to jet axis),
track impact parameters D, Z, and  j

T
1F. Chollet et al., https://github.com/fchollet/keras
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Simulation dataset

● p-Pb √s
NN

 = 5.02 TeV, PYTHIA6 + HIJING
● FastJet anti-k

T
 jets, R = 0.4, tracks only, bgrd. corr.

● 200k training, 50k validation samples
● True jet type set with particle level information:

 B-hadron within R = 0.4:
→ b-jet

 If instead, C-hadron within R = 0.4:
→ c-jet

 Else:
→ light-flavor jet

R = 0.4 jet

Heavy-flavour hadron found
in range→Tag as HF-jet



  

Rüdiger Haake 8Machine learning in ALICE

Results: Mistagging vs. b-jet efficiency

● Solid lines:
ML-based method
(statistical uncertainty 
only)

● Dashed lines:
Conventional, cut-
based method1

● ML-assisted tagging method very promising
● Mistagging efficiency much lower for c- and udsg-jets

1 cf. arXiv:1605.00143
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Results: Mistagging efficiency vs. jet pT

● Solid symbols:
ML-based method 
(statistical uncertainty 
only)

● Open symbols:
Conventional, cut-
based method1

● b-jet efficiency fixed 
(red)

● Also here: ML-assisted tagging method very promising

1 cf. arXiv:1605.00143
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Results: Mistagging efficiency vs. jet pT

● Mistagging efficiency 
for higher b-jet 
efficiency

● Solid symbols: 
c-efficiency

● Open symbols: 
udsg-efficiency

● Sample mostly udsg. About 90% udsg-, 5% c-jets
→ udsg efficiency should be below 0.5-1%
→ c efficiency should be below a 5-10%

● Higher b-jet efficiencies possible



  

Rüdiger Haake 11Machine learning in ALICE

Training control plots

● Accuracy, loss good control parameters
● Model shows slow learning up to high 

epoch counts

● Learning rate parameter has been 
lowered after 200 epochs:

[10-4, 10-5]

● Not much to gain with longer training
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Training control plots

● Accuracy, loss good control parameters
● Model shows slow learning up to high 

epoch counts

● Learning rate parameter has been 
lowered after 200 epochs:

[10-4, 10-5]

● Not much to gain with longer training

● AUC = Area Under ROC Curve

● AUC reveals slow, but constant learning 
up to 220 epochs

● Clearly separated score distribution

AUC

Score
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Dielectron classification

● Dielectrons created at all stages of collision
● Negligible interaction after creation

Interesting probe for QGP

● Here: Focus on low-mass e+e- identification
● Main goal of dielectron classification analysis:

Reject background efficiently
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Dielectron classification

After NN cut

● Sample is contaminated w/ combinatorial & γ-conversion pairs
● Use two neural networks to classify background

(1) Pairs from conversion
(2) Pairs with one electron from photon conversion
Fully-connected, multilayered networks

● Cut such that signal is most significant

Before NN cut
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Dielectron classification

● Sample is contaminated w/ combinatorial & γ-conversion pairs
● Use two neural networks to classify background

(1) Pairs from conversion
(2) Pairs with one electron from photon conversion
Fully-connected, multilayered networks

● Cut such that signal is most significant

Significance gain

Very promising gain
in significance
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On top: Improved electron identification

● Electron identification using several subdetectors in ALICE
Measurement of nσ’s: How many standard deviations away from 
mean expected value

● MVA approach:
Use Boosted Decision Tree (BDT) on nσ values, track properties

● Performance evaluated in pp. Soon: PbPb

No cut PID cut MVA cut

nσ distribution for electrons TPC:
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Summary

b-jet tagging
● Deep learning tagging method has been developed
● Performance evaluated in p-Pb MC simulations and

compared to cut-based method
● Results are very promising

● Tagging method allows much higher b-jet efficiencies
● Lower mistagging rates

● Application on p-Pb data ongoing → promising results
● In addition: c-jet tagging to be explored
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Summary

Low-mass dielectron classification
● Applied BDT to electron identification in pp, soon Pb-Pb
● Applied NN to classify dielectron background in Pb-Pb
● Very promising performance in MC simulations
● Electron identification in PbPb
● Application on pp, p-Pb, and Pb-Pb LHC Run 2 data

Several other ML-based analyses in ALICE …
● For example, this morning at EPS-HEP:

Charmed mesons & baryons pp & pPb (A. De Caro)

Thank you for your attention!
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The ALICE detector



  

Rüdiger Haake 24Machine learning in ALICE

MC-data adaption

● Method strongly relies on accuracy of MC

● Ansatz: Change MC such that it better 
reproduces data in our feature space

● Find differences: Use GBDT classifier to 
separate MC & data

● Cure differences: Reweight regions in 
feature-space to have same effective 
population in MC & data

● Using MC-data adaption leads to 
significantly better results

(A. Rogozhnikov, 1608.05806)

ROC curve of classifier: After 
reweighting, data and MC 
are hardly to separate in 
feature space
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b-jets: Model design

Convolutional networks
on fixed-length sequences

of low-level parameters
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b-jets: Model design

Dropout: 0.1 for all
layers & branches

Convolutional networks
on fixed-length sequences

of low-level parameters
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b-jets: Model design

FC network on top
Higher dropout of 0.25 here
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b-jets: Model design

Other model properties
● ADAM optimizer
● Loss: binary crossentropy
● Activation function: ReLU

Last neuron is
sigmoid-activated
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b-jets: Simulation dataset II

● Strictly separated samples for training, validation, 
and testing

● 200’000 (training), 50’000 (validation) for each class
● Signal class: 100% b-jets
● Background class: 10% c-jets & 90% udsg-jets

Note: This is for the network to adjust better to udsg-jets
The impact of using different percentages is small

● Testing statistics is higher:
~1.8M udsg-jets, ~500k c-jets, 580k b-jets
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