
Deploying services with Mesos at a 

WLCG Tier 1

Andrew Lahiff, Ian Collier

HEPIX Spring 2016 Workshop, DESY Zeuthen



Overview

• Services at RAL

• Mesos

• Example migration of a service from physical hosts to Mesos

• Migrating other services

• Some impressions

• What’s next

2



Services at RAL

• Long-running production services are deployed on multiple 
platforms

– Bare metal, 2008 Hyper-V, 2012 Hyper-V (soon), cloud (soon)

• Configuration management greatly simplifies deployment 
& management of services, but there’s a lack of 
automation

– Manually decide on which platform & host to deploy

– Deployment & upgrades still involve many manual steps

– Very static environment

• e.g. many manual steps required to scale horizontally

– In case of problems with individual machines

• manual intervention required to restore services

3



Services at RAL

• Changing landscape

– More & more communities (non-LHC) as well as local 
facilities becoming important

• likely to need to run additional services

– Staff effort more likely to decrease than increase

• Important to

– Reduce the amount of effort required to manage services 
without affecting availability (ideally improving it)

– Reduce number of out-of-hours interventions

– Be more agile and adaptive to changing conditions

– Maximize utilization of resources

• Others must have similar problems – what’s happening in 
the wider world?

4



Services at RAL

• One solution is to make significant & fundamental 
changes to the way we run services

– Manage applications using a scheduler

• would allow us to automate most of what we do manually 
today (see later)

• possibility for application-aware scheduling, e.g. a scheduler 
which knows how an Elasticsearch cluster should be managed

– Run applications in containers

• removes the dependency between applications & hosts

• enables applications to be quickly started anywhere

• allows for isolation between different applications

5



Apache Mesos

6

• Originated in UC Berkeley in 2011 & became a Top-Level 
Project at Apache in 2013

• Mesos is a cluster manager which enables a large group of 
machines to appear as a single pool of resources

– abstracts away the concept of individual machines

• Used by an increasing number of both small & large 
organisations for reasons including

– improving resource utilisation: have multiple distributed 
systems sharing the same resources

– providing a self-healing fault-tolerant infrastructure

– scalable to 10,000’s nodes



Mesos agentMesos agentMesos masterMesos masterMesos master

Architecture at RAL

Mesos master

ZooKeeper

Marathon

Mesos agent

Mesos agent

• ZooKeeper: used for leader election & 
distributed coordination

• Mesos masters: in control of the cluster; 
offer resources to schedulers

• Marathon: distributed “init” for long-
running services (a Mesos framework)

• Mesos agents: provide resources & run 
tasks

16 x bare metal: SL7, 16 cores, 24 GB RAM

5 x SL7 VMs

7

orchestration



Mesos agentMesos agentMesos masterMesos master Other servicesMesos master

Architecture at RAL

Mesos master

ZooKeeper

Marathon

Mesos agent

Mesos agent

Docker engine

Docker registry

• Docker engine: allows each Mesos agent 
to run Docker containers

• Docker registry: local (private) image 
store

8

orchestration

containers



Load balancer

Mesos agentMesos agentMesos masterMesos master Other servicesMesos master

Architecture at RAL

Mesos master

ZooKeeper

Marathon

Consul server

Mesos agent

Mesos agent

Docker engine

dnsmasq

Consul client

Registrator

Load balancer

HAProxy

Keepalived

Docker registry

Consul client

• Consul: distributed tool for service 
discovery

• Registrator: registers services provided by 
Docker containers with Consul

• dnsmasq: allows containers to access 
Consul’s DNS interface

• HAProxy: load balancing, dynamically 
updated by Consul & made highly 
available by Keepalived 9

orchestration

service discovery

containers



Load balancer

Mesos agentMesos agentMesos masterMesos master Other servicesMesos master

Architecture at RAL

Mesos master

ZooKeeper

Marathon

Consul server

Mesos agent

Mesos agent

Docker engine

dnsmasq

Consul client

Registrator

cAdvisor

Load balancer

HAProxy

Keepalived

InfluxDB

Grafana

Docker registry

Consul client

• cAdvisor: collects resource usage metrics 
from containers

• InfluxDB: time series database
• Grafana: visualization

10

orchestration

service discovery

metrics

containers



Load balancer

Mesos agentMesos agentMesos masterMesos master Other servicesMesos master

Architecture at RAL

Mesos master

ZooKeeper

Marathon

Consul server

Mesos agent

Mesos agent

Docker engine

dnsmasq

Consul client

Registrator

cAdvisor

orchestration

service discovery

metrics

logging

Load balancer

HAProxy

Keepalived

Filebeat

Filebeat

Filebeat

InfluxDB

Grafana

Logstash

Elasticsearch

Docker registry

Consul client containers

Kibana

• Filebeat: tails logs & ships to Logstash, 
which extracts useful information to be 
stored in Elasticsearch & visualized by 
Kibana

11



Configuration management vs 
scheduling

• Could deploy parts of the infrastructure itself using Marathon

– install just Mesos and Docker engine on each Mesos agent

– all other services needed (metrics, logging, service discovery) run via 
Marathon instead of installing RPMs

• Some benefits

– e.g. Marathon would ensure everything is running, could do rolling 
upgrades, etc.

• Some potential problems

– core services start to become dependent on scheduling

• Currently have separation between infrastructure & applications

– Infrastructure (orchestration, service discovery, monitoring, logging)

• Entirely configured & deployed using Aquilon (Quattor)

– Applications run on top of this infrastructure

• They are managed by Marathon, for example

– We’re currently cautious & unlikely to move from this any time soon
12



Example service: top BDII

• Simple example of grid middleware

– no host certificate required

• Very similar to all other services at RAL in terms of

– deployment

– configuration

– alerts

– monitoring

– how external “users” access it

– how failures are handled

– how upgrades are handled

– ...

13



Current production service

• Current top BDII production service at RAL

– 3 physical machines: 8 cores, 16 GB

– Site firewall hole for each machine

– Round-robin DNS alias

• Nagios tests

– 24 hour pager alarms for each host

• top BDII service check

• host checks (load, disk space, read-only filesystem, host 
down)

• Custom restarter script on each host

• Metrics

– standard Ganglia metrics only

14



Limitations & issues

• If a machine dies or has problems overnight

– still in DNS alias, so some % of requests will fail until fixed

– pager alarm triggered, someone will try to fix it

• What if the 3 existing machines can no longer cope with 
the load?

– there are a number of manual steps

• request IP addresses for appropriate hostname(s)

• deploy machine(s)

• request site firewall hole(s) be added

• request change to DNS alias

– this is a very slow response

15



Limitations & issues

• Upgrades

– software/OS upgrades done manually on a rolling basis

• we use a configuration management system, but there’s no 
facility for orchestration

– when machines rebooted, some % of requests will fail

• due to use of simple DNS alias

• Low utilization of resources

Load, memory & CPU usage over past year for one of the 3 top BDII hosts
16



Migration to Mesos

• What needs to be done to migrate a top BDII to Mesos?

– Need a top BDII Docker image

– JSON config for Marathon, specifies:

• image, resources required, port(s), health checks

• any contstraints, e.g. each instance should be on a different 
node or rack

– Health checks

• ideally should be built into the image & written by the 
developers of the application

• either via response code from a http endpoint (e.g. /health) or 
exit code of a script inside the container

– Site firewall holes

• Needed for floating IP addresses only

17



Self-healing & fault tolerance

• Once running under Marathon, will have improved service 
availability with less effort

– if application dies, it will be restarted

– if a machine dies, applications running on it will be restarted 
somewhere else

• Loss of Mesos masters has no affect (provided quorum is 
maintained)

Task died – restarted automatically (not necessarily on the same host)

A Mesos agent host shutdown – task restarted 
automatically on another host

A Mesos master shutdown – no effect

Each colour corresponds to a different container

18



Rolling upgrades

• Example of an automated rolling upgrade

– running containers are not upgraded, they are replaced

– old instances killed only when new ones become healthy

– configurable upgrade policies in Marathon

Number of containers 
running each version

Each colour represents
a different container

In this example Marathon 
ensures that at least 100% of 
the capacity is maintained 
during the upgrade.

Marathon waits for health 
checks to become successful 
before continuing the rolling 
upgrade. 

19



Alerts – applications

• General ideas

– no longer need to worry about individual hosts or instances 
of applications

– only need to worry if any problems will be visible to users

• In practice

– On a Nagios server

• Check that the floating IP address is alive (basic TCP test)

– Load balancer hosts

• Nagios check that the number of healthy backend servers is 
above a minimum threshold

• (Assumes that the health check used does provide a good 
indication whether the application is working or not!)

20



Alerts – infrastructure

• Standard Nagios tests

– Mesos masters

• minimum number of healthy ZooKeeper servers, Mesos 
masters & Consul servers (i.e. quorum is maintained)

• Marathon is functional & has a leader

– Mesos agents

• minimum number of healthy agents

• maximum percentage of resources usage

– Load balancer

• checks for HAProxy, Keepalived

• No callouts on any individual Mesos agents

– Nothing should depend on a specific Mesos agent being 
alive or even be aware of the hostnames

21



Infrastructure monitoring

• Consul on each Mesos agent can run standard Nagios 
checks

– Services running on them will automatically be unhealthy & 
therefore not accessible

– Consul can also provide Mesos masters with a white list of 
healthy Mesos agents

22



Metrics

• Can easily view all instances of a particular application

– irrespective of how many instances there are or what hosts 
they’re running on

– note that it wouldn’t be possible to do this with Ganglia

Top BDII resource usage metrics collected by cAdvisor, stored in InfluxDB & visualized by Grafana

23



Metrics

• What about application metrics?

– A process in the container which sends metrics 
somewhere?

• Problem: site specific, assumptions about monitoring 
technology used

– A process in the container which makes metrics available on 
a http endpoint (e.g. /metrics)?

• Probably better: metrics can be ‘scraped’

Top BDII application metrics collected by cAdvisor

24



Auto scaling

• Automatically scale capacity according to demand

– VMs take minutes to start

• this can be too long

– Containers take seconds to start

• can more quickly respond to spikes in demand

• Scaling based on metrics collected by cAdvisor

– Could use resource usage, e.g. CPU, load, memory, network

– And/or application metrics, e.g. request rate

autoscale 
controller

Marathon

InfluxDB

metrics

scaling

25



Traceability & logging

• For traceability reasons, we keep for a short period of 
time container images & Mesos sandboxes

– would allow us to investigate any issues, no matter how 
short-lived the container was

• Mesos & Marathon logs to central loggers & Elasticsearch

– information about all containers

• External (e.g. user) access to services

– HAProxy logs (to central loggers & Elasticsearch) include 
source IP, service accessed, host & container name

2016-04-16T14:45:54.281063+01:00 vm135 haproxy[14678]: 130.246.180.41:23937 

[16/Apr/2016:14:45:48.624] top-bdii-test top-bdii-test/lcg1331.gridpp.rl.ac.uk:mesos-

a94a0d23-deb9-407f-8876-0c77f01a7fdf 1/0/5657 0 -- 1/0/0/0/0 0/0

26



Migrating other services

• More complex applications

– typically have multiple sub services running in the same VM

• problems with one can affect others in the same VM

• frequently have multiple instances of all services, even if not 
needed

– can be split into multiple containers

• each container has a single purpose

• container orchestration combined with dynamic service 
discovery makes this both possible & straightforward

• Stateful applications

– Marathon supports persistent storage volumes (new)

• external disk (using a Docker volume plugin)

• local disk on each Mesos agent (tasks & their data are pinned 
to the node they first run on) 27



Some impressions

• Ideally there would be official releases of grid middleware 
as container images

– even without orchestration, would make deployment easier 
for sites

• Getting ZooKeeper, Mesos & Marathon to work is 
relatively straightforward & works reliably

• Service discovery is where things get more complicated

– many options available, no “perfect” solution (yet)

• some use DNS, some use Consul, some involve HAProxy on 
every Mesos agent, ...

• all have their pros & cons

• Similarly, there’s a variety of monitoring & logging options

28



What’s next

• Mesos currently going through the internal RAL change control 
process in order to make it a production service

– Prerequisite before running production services on Mesos

– Making the case for benefits of investing in a very different way of 
doing things 

• Looking into additional use cases, e.g.

– dynamic Jenkins slaves for another part of the Scientific 
Computing Dept at RAL

– INDIGO DataCloud pilot deployment

• Simplify creating & managing images

– Later this year a graduate trainee will work on setting up a VM & 
container “image factory”

• Host certificates & other secrets

– Need to be able to securely insert secrets into containers (& VMs)

29


