

Lustre/ZFS Development

Zeuthen Spring 2016

Walter Schoen, GSI

● ZFS at GSI
● ZFS Vectorization (G.Neskovic, lsdma)
● Hidden Markov/lustre logs (T.Stibor, lsdma)
● TSM – Lustre copy tool (T.Stibor, Intel@PCC)

Walter Schön, GSI

ZFS as Backend System for Lustre

GSI:

● used in cluster Nyx as backend FS for the OSTs
● no hardware RAID controllers are used
● due to perfomance issues, still ldiskfs on the MDTs
● RAIDZ2
● in production for >1 year

Features (some :-))

● 128 bit COW system (Yotta Byte – „..boiling the ocean ….“)
● data integrity & error correction
 => protection against silent data corruption
● data integrity check/repair on mounted volume with „scrub“
● only „used“ parts of the disks will be rebuild
● pool can be extended „step by step“ with larger disks
● snapshots

Walter Schön, GSI

Experience@GSI:

● reliable & stable +
● no automatic „handling“ of global spares/resilvering -
● => need for „scipting“ automatic resilvering of spare disks

LSDMA project University Frankfurt/GSI (HPC)

„Vectorized ZFS RAIDZ Implementation“: Gvoszden Neskovic

Large-Scale-Data-Management -> link: helmholz-lsdma.de

=> idea: vectorizing Galois Field multiplication using modern

 CPU instruction sets

Walter Schön, GSI

Error Correction in Zpools

RAIDZ2/3 based on Reed-Solomon-Codes:

● A „signal“ of k numbers should be transmitted without errors
● To add redundancy , the signal is coded as values of a polynom
● Polynoms can be expressed as sum of k monoms
● The coefficients of the monoms are a solution of a linear equation
● Polynom will be extrapolated on n>k grid points
● If m numbers will get lost/damaged, the signal can be reconstructed,
 if n-m>k
● If two disks get lost, two „syndroms“ P, Q need to be calculated
=>Algebra of a Galois Field
● P is Parity, Q Reed-Solomon-Code
=> lots of multiplications necessary : CPU, perfomance

=> optimisation possible?

Optimisation possible?

Two Variants:
● SSE variant computes 16 multiplications in parallel
● AVX2 variant computes 32 multiplications in parallel

=> Vectorisation of the Galois filed multiplicatios
 (Gvoszden Neskovec)

=> Results

Is it possible to make predictions of lustre system behavior,
based on log information?

E.G predict a „LBUG“ based on the pattern of system calls?

=> Hidden Markov Model : Investigation from Thomas Stibor
Screenshots from LUG 14 and lsdma Konferenz at GSI 2016

Analysing Lustre Log File with a Hidden Markov Model

H

GSI is now a Intel Parallel Computing Center

Link: software.intel.com/de-de/ipcc

Project: Developping a Lustre TSM copy tool

● TSM (tivoli storage manager) is a very powerfull tape archive/backup system
● Lustre is a very powerfull parallel file system :-)
● Lustre includes HSM features

=> Goal is: To combine this systems in an efficient (parallel) approach
 to have a Lustre/HSM system with a TSM servers + tape robot as backend

Lustre TSM CopyTool

GSI Project:

Developing robust
TSM CopyTool for TSM
storage backends which
seamless integrates
into Lustre HSM
framework.

TSM Overview

Tivoli Storage Manager is a client/server product for backup and archive in
heterogeneous distributed environments.

Storage hierarchies: Automatically move data from one device
to another (or one media type to another) based on
characteristics such as file size or storage capacity.

Data collocation: Storing client or group of clients in few
number of tapes as much as possible, this process is called
collocation.

Deduplication: Eliminating duplicate copies of repeating data.

Compression: Compress data
stream seamless either on client or server side.

Image from Wikipedia

Lustre TSM CopyTool (Phase 1, TSMAPI)

Lustre related HSM meta information can be
stored in char arrays object info and
description each of length 256 bytes. In this
example inode,uid,gid,fid and md5sum
information are stored.

Initial tsmapi.h (later
linked with Lustre HSM
framework)

Lustre TSM CopyTool (Phase 1, TSMAPI) (cont.)

Example output of developed
simple console client (called
ltsm) using tsmapi.h

Raw “-lApiTSM64” calls

Lustre TSM CopyTool (Phase 2 and beyond)

Integrating tsmapi.h into Lustre HSM framework

Extending tsmapi.h with new compression stream algorithm such as LZ4
(perform a comparison to TSM built-in compression)

Exploit all optimizations provided by TSM such as

Maxinum number of multiple objects per transaction

Efficient data structures for storing querying data

Will be soon available at github.

Walter Schön, GSI

Thanks to: G.Neskovic, T.Stibor

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Lustre TSM CopyTool
	TSM Overview
	Folie 18
	Lustre TSM CopyTool (Phase 1, TSMAPI) (cont.)
	Lustre TSM CopyTool (Phase 2 and beyond)
	Folie 21

