
Advanced Pool

Management

John (TJ) Knoeller

Condor Week 2016

› Two pools, both alike in dignity

› Gotchas

› Advanced configuration tips and tricks

› Did I mention gotchas?

› High Availability

2

Overview

› No real ‘best’

(But there are Worse Practices)

› Two example pools

The CS Pool

The CHTC Pool

Best Practices

3

› The Oldest HTCondor pool

Still mostly cycle scavenging

Runs every HTCondor stable build

› HTCondor on shared file system

condor_master on local disk

› Uses the tarball/zip release

› Upgrade is changing a symlink

Master restarts when It sees new binaries

The CS Pool

4

› Root config is on local machine
ETC = /shr/condor/etc

GLOBAL = $(ETC)/condor_config.global

PLATFORM = $(ETC)/condor_config.$(OPSYS)

LOCAL = $(ETC)/hosts/$(HOSTNAME).local

LOCAL_CONFIG_FILE = $(GLOBAL), $(PLATFORM), $(LOCAL)

› All other config files on shared file system
Each machine has a private config file at

/shr/condor/etc/hosts/<hostname>.local

Each OS has an OS config file at*
/shr/condor/etc/condor_config.<os>

The CS Pool config

5

› Puppet Installs HTCondor from RPM

Uses development release candidates

› We used to push the config using Puppet

Slow to push out changes

Complicated puppet rules to vary config

› Now Puppet pushes only the base config

Creates a git clone of the config repo

base config uses a script to git clean/pull

(Still working out the scaling problems)

The CHTC Pool

6

› Keep your config files in source control

› One set of config files for the whole pool

› Fetch via git
LOCAL_CONFIG_FILE = \

git_script –s $(subsys) –h $(hostname) |

› Fetch via condor_urlfetch
LOCAL_CONFIG_FILE = condor_urlfetch \

-$(subsys) http://my.com?h=$(hostname) \

$(LOCALDIR)/urlconfig.cache |

Config central

7

› Upgrades deployed gradually over 3 days

1. A few execute nodes

2. 1/3 of execute nodes

3. A non-essential Schedd

4. The Collector & Negotiator

5. Most other Schedds

6. The remaining execute nodes

7. Repeat monthly (ish)

CHTC Pool upgrade cycle

8

› Upgrade execute nodes

Gracefully to maximize throughput

Peacefully to minimize badput

› Upgrade Collector/Negotiator

Gracefully or Fast (there is no peaceful)

› Upgrade Schedd

Fast to keep jobs running

Gracefully for extended shutdown

An aside on upgrading

9

› There is no setting that will both

Shut down an Startd gracefully

Shut down a Schedd Fast

Gotcha #1

10

› 8.2+ configuration language constructs

$(<param>:<default>)

include

use (aka meta-knobs)

if, else, elif, endif

› Have “backward parseable” flavors

use, include, :if

› Have “backward fail” flavors

@use, @include, if

8.2 Power config

11

›$INT(knob,format)

›$REAL(knob,format)

Evaluate knob and printf with format

›$CHOICE(knob,list)

›$CHOICE(knob,item,item,item)

Evaluate knob as index into item list

›$Fpdnxq(file)

Extract filename parts and strip/add quotes

8.4 Power config

12

$(<param>:<default>)

› Is the value of <param> if it is defined,

otherwise it is <default>

example:

NUM_SLOTS = $(NUM_CPUS:2)/2

Number of slots will be either half the number of

cpus or it will be 1.

Substitution defaults

13

› Like LOCAL_CONFIG_FILE except

As many as you want

Nested

Read and parsed inline

› Can include the output of a command

› Macros on the include line substitute the

current value, not the final one.

Include :

14

› Every daemon and every tool will

Read every config file

Run every config script (if any)

› Sometimes several at the same time!

Scripts should have NO side effects

› Config is read as root on startup but as

condor on reconfig

All config files should be owned by root

World readable, root writable

Gotcha #2

15

FILE = config.$(FULL_HOSTNAME)

Include : $(LOCAL_DIR)/$(FILE)

FILE = script.$(IP_ADDRESS)

Include : $(RELEASE_DIR)/$(FILE) |

Foo = bar

› HTCondor 8.2+ Includes a file and the
output of a script before parsing Foo = bar

› HTCondor 8.0 sees

FILE = script.$(IP_ADDRESS)

Include = $(RELEASE_DIR)/$(FILE) |

Foo = bar

Example of Include

16

use ROLE : Submit, Execute

use POLICY : Always_Run_Jobs

use SECURITY : User_Based

use SECURITY : Strong

› Each keyword after colon expands inline to

one or more configuration statements.

› Defined when HTCondor is built
See param_info.in (mentioned earlier)

Use (meta-knobs)

17

› Categories are currently

ROLE, FEATURE, POLICY, SECURITY

› Find out what options are available with

condor_config_val use <category>

› Examine contents of a meta-knob with

condor_config_val use <category>:<option>

Explore the meta-knobs

18

›If, Elif support only basic conditionals

[!] <boolean-or-number>

[!] defined <name>

[!] version [><=]= x.y[.z]

› No comparison or complex conditionals

If version is a special case

› Conditional $(knob:0)is false when knob is

not defined.

If / Else

19

If version >= 8.1.6

use feature : gpus

else

MACHINE_RESOURCE_GPUS = 0

endif

› HTCondor 8.0 reports a syntax error!

else and endif lines have no operator

Example of If / Else

20

:If version >= 8.1.6

: use feature : gpus

:else

MACHINE_RESOURCE_GPUS = 0

:endif

› HTCondor 8.0 only sees

MACHINE_RESOURCE_GPUS = 0

(because 8.0 ignores everything after the colon)*

Pre 8.2 compatible If / Else

21

› Magic “knobs” that are set based on who is parsing config

$(IsMaster)

$(IsNegotiator)

$(IsSchedd)

$(IsShadow)

$(IsStartd)

$(IsStarter)

$(IsTool)

$(IsWindows)

Special macros for If

22

condor_config_val output can differ from what

the daemon sees if you use the $(IsXXX)

macros. You must use

condor_config_val -<daemon>

condor_config_val –subsys <daemon>

To see the effective config

Gotcha #3

23

HAVE_SCHEDD_DAEMON = \

stringListMember("SCHEDD","$(DAEMON_LIST)")

If $INT(HAVE_SCHEDD_DAEMON)

MASTER_NEW_BINARY_RESTART = FAST

else

MASTER_NEW_BINARY_RESTART = GRACEFUL

endif

8.4+ if tricks

24

If and include evaluate arguments inline

So the previous example only works if it is

after the last DAEMON_LIST in your config

Gotcha #4

25

Line continuation behavior changed in 8.2

Gotcha #5

26

We want to frob the bobulator \

FROB_BOBULATOR = true

› In 8.0 \ at the end of a comment line ‘eats’
the next line, so FROB_BOBULATOR is not set

› In 8.2+ \ at the end of a comment line is

ignored, so every comment line needs its

own #

Line continuation after comment

27

ALLOW_WRITE = a.b.c.d \

a.b.c.e \

a.b.c.x \

a.b.c.z

› In 8.0 you end up with # as a list member

› In 8.2+ a.b.c.x is commented out.

Comment after line continuation

28

condor_config_val –schedd –verbose

Ask the Schedd about it’s config

condor_config_val –subsys schedd –verbose

Parse the config as the schedd would

condor_config_val –writeconfig:upgrade -

Write an ‘upgrade’ file containing only the

knobs that you’ve changed

condor_config_val tricks

29

› HTCondor has the ability to have daemons

failover to another machine in the event of

a crash

› Typically used for either the Central

Manager or the SchedD (if your pool has

only a single SchedD)

› However, is generic enough to work with

any daemon under control of the Master

High Availability

30

› This is done using the High Availability

Daemon (HAD)

› Each pool functions with exactly one

Negotiator running – no more no less

If no negotiator, new new matches can be

made

If more than one, chaos arises as they attempt

to match jobs to multiple different places at

once

Central Manager HA

31

› StartdDs advertise to more than one

collector

› The condor_had daemons communicate

and use a voting protocol to ensure a new

negotiator is spawned if the old one

disappears due to the machine crashing or

falling off the network

› Full configuration details in the manual:
http://research.cs.wisc.edu/htcondor/manual/v8.5/3_11High_Availability.html

Central Manager HA

32

http://research.cs.wisc.edu/htcondor/manual/v8.5/3_11High_Availability.html

› Many pools operate with a single SchedD

› If the SchedD is down, execute nodes may

continue to run the jobs

› The SchedD can reconnect when it comes

back

› But what if the machine has crashed hard?

SchedD Failover

33

› A new SchedD can be spawned

› The job_queue.log must be stored in a

shared file space that can seen by all

machines that will potentially run a SchedD

› A lock file prevents multiple SchedDs from

running concurrently

Lock file must also be in the shared file space

› Again, full configuration details in the manual

SchedD Failover

34

Any Questions?

35

