
Putting your users in a Box

John (TJ) Knoeller

Center for High Throughput

Computing

› Why put jobs in a box?

› Boxes that work everywhere

› Shiny new Linux-only boxes

› Older Linux-only boxes

2

Outline

1) Protect the machine from the job.

2) Protect the job from the machine.

3) Protect one job from another.

3 Protections

3

› Allows nesting

› Need not require root

› Can’t be broken out of

› Portable to all OSes

› Allows full management:

Creation // Destruction

Monitoring

Limiting

The ideal box

4

CPU

Memory

Disk

Network.

Signals

Resources a job can (ab)use

5

› Some people see this problem, and say

› “I know, we’ll use a Virtual Machine”

The Big Hammer

6

› Might need hypervisor installed

The right hypervisor (the right Version…)

› Need to keep full OS image maintained

› Difficult to debug

› Hard to see into

› Hard to federate

› Just too heavyweight

Problems with VMs

7

› One way glass

Opaque from the inside not from the outside

Work with Best feature of HTCondor ever

• Which is …. ?

› Linux containers (LXC) applicable here

But rootly powers required

How far can we get without root?

Containers, not VMs

8

› HTCondor Preempt expression

PREEMPT =

TARGET.MemoryUsage > threshold

ProportionalSetSizeKb > threshold

› setrlimit call

USER_JOB_WRAPPER

STARTER_RLIMIT_AS

Boxing without root

9

ASSIGN_CPU_AFFINITY = true

› Pros

Works with dynamic slots

Works even if not root

Any Linux/Windows version

› Cons

Glide-ins don’t know which CPU to use

Doesn’t allow the job to soak up idle cycles

CPU AFFINITY

10

› PID namespaces

› Named Chroots

› Cgroups

› Mount under scratch

and/or

› Docker *

* Not root exactly, but might as well be…

With root comes…

11

› You can’t kill what you can’t see

› Requirements:

HTCondor 8.0+

RHEL 6 or later

USE_PID_NAMESPACES = true

• (off by default)

Must be root

PID namespaces

12

PID Namespaces

13

Init (1)
Master (pid 15)

Startd (pid 26)

Starter (pid 39)

Job B (pid 2)

Starter (pid 73)

Job A (pid 2)

Condor_init (pid 1) Condor_init (pid 1)

› Isolate the filesystem from the job

› Startd advertises available chroots

NAMED_CHROOT = /foo/R1,/foo/R2

› Job picks one:

+RequestedChroot = “/foo/R1”

› Make sure path is secure!

Named Chroots

14

Ancient History:

Chroot

› HTCondor used to chroot every job:

No job could touch the file system

Private files in host machine stayed private

But…

Chroot: more trouble

than value

Increasingly difficult to work:

Shared libraries

/dev

/sys

/etc

/var/run pipes for syslog, etc.

How to create root filesystem?

Easier now with yum, apt get, etc., but still hard:

We gave up!

HTCondor no longer chroots all jobs

But you can optionally do so.

Very few site sites do…

Enter Docker

Docker manages Linux containers.

And gives Linux processes a private:

• Root file system

• Process space

• NATed network

• UID space

Examples

This is an “ubuntu” container

This is my host OS, running

Fedora

Processes in other

containers on this

machine can NOT see

what’s going on in this

“ubuntu” container

Docker Container vs. Image

Image is like Unix program on disk

read only, static

Container is like Unix process

Docker run starts a container from an image

Container states: like a condor job:

Running

Stopped

Docker Images

Images provide the user level filesystem

Doesn’t contain the linux kernel

Or device drivers

Or swap space

Very small: ubuntu: 200Mb.

Images are READ ONLY

At the Command Line

$ cat /etc/redhat-release

Fedora release 20 (Heisenbug)

$ docker run ubuntu cat /etc/debian_version

jessie/sid

$ time docker run ubuntu sleep 0

real 0m1.825s

user 0m0.017s

sys 0m0.024s

Isn’t this a Virtual Machine?

› Containers share Linux kernel with host

› Host can “ps” into container
One-way mirror, not black box

› Docker containers do not run system daemons
CUPS, email, cron, init, fsck, (think about security!)

› Docker images much smaller than VM ones
Just a set of files, not a disk image

› Docker provides namespace for images

› Much more likely to be universally available

Docker run two step

docker run ubuntu cat /etc/deb..

Every image that docker runs must be local

Docker run implies docker pull

run can fail if image doesn’t exist

or can’t be downloaded

Where images come from

Docker, inc provides a public-access hub

Contains 10,000+ publically usable images behind a CDN

What’s local?

$ docker images
$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

new_ubu latest b67902967df7 8 weeks ago 192.7 MB

<none> <none> dd58b0ec6b9a 8 weeks ago 192.7 MB

<none> <none> 1d19dc9e2e4f 8 weeks ago 192.7 MB

rocker/rstudio latest 14fad19147b6 8 weeks ago 787 MB

ubuntu latest d0955f21bf24 8 weeks ago 192.7 MB

busybox latest 4986bf8c1536 4 months ago 2.433 MB

How to get

$ docker search image-name

$ docker pull image-name

Full Image name

hub.demo.org:8080/user/image:ver

Name of the hub (default docker-io)

Image name and version: (default: “latest”)

Run your own docker hub

› Docker hub is an image!

$ docker run docker/docker-registry

(and a bunch of setup – google for details)

Any production site will want to run own hub

Or put a caching proxy in front of the public one

HTCondor docker universe

Need condor 8.4+

Need docker (maybe from EPEL)

$ yum install docker-io

Docker is moving fast: docker 1.8+, ideally

Condor needs to be in the docker group!

$ useradd –G docker condor

$ service docker start

What? No Knobs?

› condor_starter detects docker by default

$ condor_status –l | grep –i docker

HasDocker = true

DockerVersion = "Docker version 1.5.0, build a8a31ef/1.5.0"

› If docker is in a non-standard place

DOCKER = /usr/bin/docker

“Docker” Universe jobs

universe = docker

docker_image = deb7_and_HEP_stack

executable = /bin/my_executable

arguments = arg1

transfer_input_files = some_input

output = out

error = err

log = log

queue

A docker Universe Job

Is a Vanilla job

› Docker containers have the job-nature
condor_submit

condor_rm

condor_hold

Write entries to the user log event log

condor_dagman works with them

Policy expressions work.

Matchmaking works

User prio / job prio / group quotas all work

Stdin, stdout, stderr work

Etc. etc. etc.*

Docker Universe

universe = docker

docker_image =deb7_and_HEP_stack

executable = /bin/my_executable

• Image is the name of the docker image on the

execute machine. Docker will pull it

• Executable is from submit machine or image

NEVER FROM execute machine!

• Executable is optional

(Images can name a default command)

Docker Universe and File

transfer

universe = docker

transfer_input_files = <files>

When_to_transfer_output = ON_EXIT

• HTCondor volume mounts the scratch dir

And sets the cwd of job to scratch dir

• RequestDisk applies to scratch dir, not container

• Changes to container are NOT transferred back

• Container destroyed after job exits

Docker Resource limiting

RequestCpus = 4

RequestMemory = 1024M

RequestDisk = Somewhat ignored…

RequestCpus translated into cgroup shares

RequestMemory enforced

If exceeded, job gets OOM killed

job goes on hold

RequestDisk applies to the scratch dir only

10 Gb limit rest of container

› Install docker

› Give HTCondor access to docker

› Profit!

But can you effectively box jobs without it?

Docker universe “just works”

35

› Two basic kernel abstractions:

1) nested groups of processes

2) “controllers” which limit resources

Control Groups

aka “cgroups”

36

› Implemented as filesystem

Mounted on /sys/fs/cgroup, or /cgroup or …

› User-space tools in flux

Systemd

Cgservice

› /proc/self/cgroup

› Docker manages cgroups for containers

Control Cgroup setup

37

› Cpu

Allows fractional cpu limits

› Memory

Need to limit swap also or else…

› Freezer

Suspend / Kill groups of processes

Cgroup controllers

38

› Requires:

RHEL6, RHEL7 even better

HTCondor 8.0+

Rootly condor

BASE_CGROUP=htcondor

And… cgroup fs mounted…

Enabling cgroups

39

› Starter puts each job into own cgroup

Named exec_dir + job id

› Procd monitors

Procd freezes and kills atomically

› MEMORY attr into memory controller

› CGROUP_MEMORY_LIMIT_POLICY

Hard or soft

Job goes on hold with specific message

Cgroups with HTCondor

40

› Or, “Shared subtrees”

› Goal: protect /tmp from shared jobs

› Requires

Condor 8.0+

RHEL 5

HTCondor must be running as root

MOUNT_UNDER_SCRATCH = /tmp,/var/tmp

MOUNT_UNDER_SCRATCH

41

MOUNT_UNDER_SCRATCH=/tmp,/var/tmp

Each job sees private /tmp, /var/tmp

Downsides:

No sharing of files in /tmp

MOUNT_UNDER_SCRATCH

42

Questions?

43

