Machine Learning for Tagging and Removing Pileup

Aviv Cukierman1,2 and Max Zimet1
December 7, 2015

1SLAC; 2Stanford Physics Department
Outline

• Motivation and Background
• Techniques
• Figures of Merit
• Results
• Conclusions
Motivation and Background
Jets

- Large number of particles produced in high-energy collisions
- Hadronizing quarks and gluons result in collimated sprays of energetic particles – clusters of particles in detector
Jets

- Well-developed clustering algorithms for particles
Definitions
Pileup

- Many protons collided at once
- Multiple interaction points
- In a given event, one interesting interaction, the rest uninteresting physics
- Pileup superposed on top of jets
Pileup

• Pileup makes clustering harder

• Challenge: Reconstruct jets while mitigating pileup contribution
Pileup

- Pileup makes clustering harder

- Challenge: Reconstruct jets while mitigating pileup contribution
Techniques
Area Subtraction

- Estimate mean density of pileup energy deposit in event
- Estimate area of jet
- Subtract area * pileup energy density
- Current state of the art in ATLAS
Pileup Tagging

- Use machine learning techniques to tag particles as pileup
- Remove tagged particles
- Run clustering on remaining particles

1. Pileup
 - Machine Learning
 - Not pileup

2. Pileup
 - Not pileup
 - Clustering

3. Jets with no pileup
Pileup Tagging

• Linear classifier (use simulations for training)

• Features
 - Sum p_T in cones around particle
 - Sum p_T/distance from particle in cones around particle
 • PUPPI (http://arxiv.org/abs/1407.6013)
 - Tracking information in cones around particle
 • CVF (Francesco Rubbo, Aviv Cukierman)
 - Eta, phi of particle
 - p_T of particle
 - Combinations, kernels, indicators, etc. of above features

• Note: only care about classifying particles within jets
 - Assume all particles outside of jets are pileup
Feature vector $\Phi(particle)$; Weight vector w; Classification score $f = \Phi^T w$; Prediction: $\text{sign}(f)$

Truth value $y = \{-1, 1\}$

Loss: hinge loss ($y*f$)

Problem – to first order, everything is pileup!

Fix: penalize mislabeling non-pileup more
 - For pileup, hinge loss ($y*f$)
 - For not pileup, $x * \text{hinge loss} (y*f)$
 - $x = \{2,5,10,\ldots\}$

Remove pileup particles

Weight pileup particles by score
Figures of Merit
Response

- Difference between reconstructed jet p_T and true value
 - Get true value by running jet clustering on only non-pileup particles
Results
ROC Curve

• Balance between false positives and false negatives
Mean of Response

- Not much improvement yet
• Not much improvement yet
Pileup jet rate

- Trained on particles in all jets, not just jets we know are not from pileup
- We learned how to suppress pileup jets!
Conclusions and Future Work
Conclusions and Future Work

• Learned how to suppress pileup jets
 - Not the original goal

• Future work:
 - Choose training set more carefully
 - Try training only on particles in high-pT jets assigned to non-pileup truth jets
 - Use neural networks to learn features
 - Incorporate area subtraction after classification
 - Use more advanced techniques for classification
 - Examine features for discrimination power

• Other ideas (from AI):
 - Treat anti-kT as search through space of possible jets, optimize over anti-kT distance metric cost
 - Treat event as factor graph – variables are particles, value is which jet it’s in; weight between factors is higher if in truth they are in the same jet
 - Include pileup jets