28th Texas Symposium on Relativistic Astrophysics

Contribution ID: 274

Type: Talk

Constraints on induced gravity dark energy models

Sunday, 6 December 2015 14:53 (26 minutes)

We study the predictions for structure formation in an induced gravity dark energy model with a quartic potential. By developing a dedicated Einstein-Boltzmann code, we study self-consistently the dynamics of homogeneous cosmology and of linear perturbations without using any parametrization, accurately recovering the quasi-static analytic approximation in the matter dominated era. We use CMB anisotropies data and a compilation of BAO data to constrain the coupling γ to the Ricci curvature and the other cosmological parameters. By connecting the gravitational constant in the Einstein equation to the one measured in a Cavendish-like experiment, we find $\gamma < 0.0012$ at 95 % confidence level with Planck 2013 and BAO data, and present the updated Planck 2015 constraint. Because of a degeneracy between γ and the Hubble constant $H_0,$ we show how larger values for γ are allowed, but not preferred at a significant statistical level, when local measurements of H_0 are combined in the analysis with Planck data. We also extend the analysis and constraints to a simple monomial potential with a positive exponent.

Primary author: BALLARDINI, Mario (University of Bologna)

Presenter: BALLARDINI, Mario (University of Bologna)

Session Classification: 04 - Dark energy