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ABSTRACT- We add linear combinations
R2, RµνRµν and RµνηδR

µνηδ with Einstein-Hilbert
action and obtain interior metric of an anisotropic spher-
ically symmetric collapsing stellar cloud. We solved
linearized metric equation via perturbation method
and obtained 12 different kinds of metric solutions
P1, P2, · · ·P12. Calculated Ricci and Kretschmann
scalars of our metric solutions are non-singular at
beginning of the collapse for 2 kinds of them only. Event
and apparent horizons are formed at finite times for
two kinds of singular metric solutions while 3 metric
solutions exhibit with event horizon only with no formed
apparent horizon. There are obtained 3 other kinds of
the metric solutions which exhibit with apparent horizon
with no formed event horizon. Furthermore 3 kinds
of our metric solutions do not exhibit with horizons.
Our solutions satisfy different regimes such as domain
walls (6 kinds), cosmic string (2 kinds), dark matter (2
kinds), anti-matter (namely negative energy density)
(1 kind) and stiff matter (1 kind). Calculated time
dependent radial null geodesics expansion parameter
Θ∗i (T ); i = 1, 2, · · · 12 takes positive (negative) values for
4 (8) kinds of our solutions which means the collapse
ended to a naked (covered) singularity at end of the
collapse.
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Higher order derivatives gravity models are made
from extension of the Einstein metric equation via ‘R2‘,
¤R, ‘RµνRµν ‘ and ‘RµνγδR

µνγδ‘, as Gµν = 8πTµν =
−(αH

(1)
µν + βH

(2)
µν ) where we used units ‘G = c = ~ = 1‘

and defined α = ζ − ξ,β = η + 4ξ,H
(1)
µν = 2(∇µ∇νR +

RRµν)−gµν(2¤R+ 1
2R2) and H

(2)
µν = ∇µ∇νR−¤Rµν +

2RαβRαβµν− 1
2gµν(¤R+RαβRαβ). ‘R‘, ‘Rµν ‘ and ‘Rµνγδ‘

given in the above equations are Ricci scalar, Ricci tensor
and Kretschmann scalar respectively [1]. The coupling
constants ‘ζ‘, ‘η‘ and ‘ξ‘ come from dimensional regular-
ization of interacting quantum matter fields. The basic
motivation for studying these Higher Derivative gravity
theories comes from the fact that they provide one pos-
sible approach to an as yet unknown quantum theory
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of gravity [2]. However, the structure of classical solu-
tions of higher derivative gravity may provide a better
approximation to some metric solutions with respect to
those provided by general relativity. Some applications
are studied at classical Robertson-Walker cosmology [3,4]
and its quantum approach also [5]. In the present work
we want to study physical effects of these higher order
terms on collapse of anisotropic spherically symmetric
stellar cloud with general from of internal line element as
ds2 = −ea(t)dt2 +eb(t)dr2 +t2ec(t)(dθ2 +sin2 θdϕ2) where
a(t), b(t), c(t) are determined by solving the metric equa-
tion. It should be pointed that 2-sphere spatial part of
the above metric is inhomogeneous because of absence of
r2 term. Inserting the above line element the components
of the Einstein metric equation become nonlinear and so
we solve them via perturbative analytical methods. Set-
ting ea(t) = ea0{1+εa1(t)+O(ε2)},eb(t) = eb0{1+εb1(t)+
O(ε2)} and ec(t) = ec0{1+εc1(t)+O(ε2)} where a0, b0, c0

are constants and ε is a suitable dimensionless order pa-
rameter of the series expansion, zero order approximation
of the metric equation become ea0 = −ec0 and first order
part of nonzero tt, rr, θθ, components of the metric equa-
tion leads to linear differential equations which has solu-
tions as: a1(T ) ' ATµ, b1(T ) ' BTµ, and c1(T ) ' ETµ

where T = t/
√

α and numerical values of the parameters
A,B, E and µ and ω = β

α are given at table 1 for 12 kinds
of our metric solutions Pi = (µi, ωi); i = 1, 2, · · · 12 with
fluid characters as: ρ(T )

ρ(
√

α)
≈ Tµ−2 = pr(T )

pr(
√

α)
= pt(T )

pt(
√

α)
=

p(T )
p(
√

α)
= Rλ

λ(T )

Rλ
λ(
√

α)
=

√
K(T )

K(
√

α)
. Here ρ, pr, pt, p are density,

and pressures (radial, tangential and itself). Rλ
λ and K

are Ricci and Kretschmann scalar respectively. We evalu-
ated also barotropic index γ(T ) = p(T )/ρ(T ), anisotropy
index ∆(T ) = (pt−pr)/ρ, as constants, time formation of
horizons (apparent and event) and also possible trapped
surfaces for all 12 kinds of our metric solutions. Our nu-
merical results are collected at the following tables and
present that geometrical source treats as domain walls (6
kinds), cosmic string (2 kinds), dark matter (2 kinds),
stiff matter (1 kind) and anti-matter (negative energy
density) with 1 kinds. In summary 7 kinds of our solu-
tions reach to compact object with covered singularity
(the black hole) but 5 solutions reach to naked singular
metric at end of the collapse and hence cosmic censorship
conjecture maintain valid for 7 kinds of our 12 metric so-
lutions only.
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Pi µi ωi (A/B)i (E/B)i R∗i K∗
i

P1 +2.433 -0.719 +1.450 +1.019 -25.619 +210.786
P2 +2.057 +0.968 +0.029 -0.015 +6.392 +13.345
P3 +1.888 -0.607 -0.174 -0.188 +9.583 +14.424
P4 +1.616 -1.648 +1.633 +1.568 -25.774 +199.272
P5 +0.644 -0.086 -0.001 +0.295 -0.531 +6.690
P6 +0.521 +1.883 +1.478 -4.782 +18.432 +1875.170
P7 +0.508 -1.713 -0.304 +1.086 -3.257 +92.697
P8 -0.041 +3.285 -0.028 -0.009 -0.002 +0.039
P9 -0.201 +0.850 +0.389 -0.672 +0.076 +20.787
P10 -0.270 -1.986 -0.044 -0.047 -0.083 +0.269
P11 -3.284 -2.013 +3.467 -1.339 +37.305 +456.394
P12 -6.206 +0.645 -9.146 -2.433 +68.973 +21412.731

Table 1. Characteristics of metric parameters

Pi ρi
∗ pi

∗
r pi

∗
t pi

∗ ∆i(t)
P1 +3.049 -7.033 -5.452 -7.298 +1.069
P2 +0.925 +0.230 -2.038 -1.317 -0.616
P3 +0.633 +1.061 -1.435 -0.498 -1.198
P4 +3.468 -6.456 -3.300 -5.253 +1.081
P5 +1.486 -0.799 -0.364 -0.410 +0.207
P6 -7.755 +13.316 +2.145 +3.525 +1.117
P7 +2.942 -2.928 -0.622 -0.876 +0.695
P8 +1.037 -0.036 -0.0001 +0.0002 -8.917
P9 +0.074 +0.740 -0.113 -0.157 +0.157
P10 +1.010 -0.007 -0.035 -0.031 -0.527
P11 +0.590 -0.936 -6.065 -2.162 -0.753
P12 +22.814 +113.561 +48.430 +53.458 -7.776

Table 2. Fluid characteristics of stellar cloud.

Pi TEH/
√

α TAH/
√

α REH/
√

α RAH/
√

α

P1 - - - -
P2 - +5.453 - +3.889
P3 +2.526 +1.707 +2.752 +1.188
P4 - - - -
P5 36692.907 - +38236.634 -
P6 - +0.032 - +0.015
P7 +10.427 - +3.054 -
P8 1.372× 10−38 - 1.342× 10−38 -
P9 - 0.082 - -
P10 9.473× 10−6 7.099× 10−6 +9.677× 10−6 -
P11 - - - -
P12 +1.429 - +2.647 -

Table 3. Time and radius of formed event and apparent
horizons

FIG. 1: Numerical values of the parameters Pi = (µi, ωi) are
crossing points of the diagrams collected at the table 1.

FIG. 2: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P1

Pi γi(t) Trapped surfaces Phase of fluid Nakedness
P1 -0.669 Full Domain walls Covered
P2 -0.323 Quasi Cosmic sting Naked
P3 -0.174 Full Dark matter Covered
P4 -0.796 No Domain walls Naked
P5 -0.563 No Domain walls Naked
P6 -0.822 Quasi Anti-matter Covered
P7 -0.704 No Domain walls Naked
P8 +1.092 No Stiff matter Naked
P9 -0.691 Quasi Domain walls Covered
P10 -0.438 Quasi Quasi-cosmic string Covered
P11 -0.178 Quasi Dark matter Covered
P12 -0.552 Quasi Quasi-domain walls Covered

Table 4. Nakedness, trapped surfaces and phase of fluid
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FIG. 3: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P2

FIG. 4: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P3

FIG. 5: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P4

FIG. 6: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P5

FIG. 7: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P6

FIG. 8: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P7
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FIG. 9: Diagram of radial null geodesics expansion parameter
is plotted against T for metric solution P8

FIG. 10: Diagram of radial null geodesics expansion parame-
ter is plotted against T for metric solution P9

FIG. 11: Diagram of radial null geodesics expansion parame-
ter is plotted against T for metric solution P10

FIG. 12: Diagram of radial null geodesics expansion parame-
ter is plotted against T for metric solution P11

FIG. 13: Diagram of radial null geodesics expansion parame-
ter is plotted against T for metric solution P12
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