FO Pincot 927 – TE-MSC- MDT

22/09/2015

HTS instrumentation Report

Report on instrumentation activities on HTS insert in 927 lab.

HTS spot heater fabrication

Material:

- Stainless steel 316L 0.1mm thick (CERN store scem 44.59.20.110.8)
- Kapton tape 70µm thick (scem 04.94.70.100.3)
- Copper CuSn6 50µm thick
- Solder SnPb (60/40 scem 29.20.01.304.9) + huile a braser F-SW11 DIN 8511 (scem 29.30.01.120.8)

Assembly:

3 different designs (size – CF Glyn documents) Heater design 1: Stainless steel 0.1mm thick * 60mm long * 2mm wide Heater design 2: Stainless steel 0.1mm thick * 60mm long * 12mm wide Heater design 3: Stainless steel 0.1mm thick * 35mm long * 12mm wide

2 copper leads (in CuSN6, 1/1.mm wide, 50µm thick) and 2 connectors (Fischer Elektronik SL1.025.36Z, male, 2.54mm, 2 pins) are soldered on each side of the Stainless steel strip. The conectors are used to perform 4 wires measurements and allow the powering of the assembly.

Kapton tapes are added on each side of stainless the steel sheet.

	HTS Spot Heaters														
16/06/2015	,	Resistance (mΩ) - 4 wires Keithley 2000													
			1st measure after 10 cycle liq N2 theoretical												
Name	Spot Heaters #	size	@ T=21.5C	@ T=Liq N2	@ T=21.5C	@ T=Liq N2	T=77K								
Design 1	1	60*2*0.1	228	168	225	167	158.0								
Design 1	2	60*2*0.1	249	183	252	182	158.0								
Design 2	1	60*12*0.1	76.6	54.0	70	51	26.3								
Design 2	2	60*12*0.1	70.6	52.5	63	48	26.3								
Design 3	1	35*12*0.1	59.6	45.6	55	44	15.3								
Design 3	2	35*12*0.1	55.5	38.0	58	36	15.3								

Measures / Results:

High Power signal generator for HTS spot heater

Equipment used:

- Computer
- Ni software + NI modules (DAQ mx, mathscript RT, ...)
- Compact DAQ chassi NI 9171 USB

• Compact DAQ card NI 9403

Diode T70HFL20s02
In order to protect Power supply from reverse current

• Solid state relay Crydom DC100D80C with its cooler

• DC Power supply TDK Lamda Gen60-55

 Electrolytic Capacitor Philips 100V 10μF To reduce current spike

Assembly:

Labview interface:

Name: Square signal generator

This interface can be used alone or can be integrated in another interface to perform temperature measurements.

Functions / Results:

- This system can generate a high power signal between 0 to 55V and 0 to 60A
- It generates a square signal with a maximal duration of 1s (can be modified)
- The square state (high or low) can be programmed with minimum adaptable steps of 100ms (can be modified)

Example of programmed sequence:

Measured results on the SH terminal using an oscilloscope

TDS 3014 - 10:46:06 11/08/2015

Delay and rising time:

The delay between the digital output signal on the relay and the high power signal on the SH is around $20\mu s$.

The rising edge of the square signal is not perfectly straight. The rising time is about 16µs

TDS 3014 - 11:37:47 11/08/2015

Measure done on 2 power 50W resistances in parallel at 10V, 20V, 30V, 40V, 50V and 60V. For U=60V the current is about I=4A

> <u>Temperature measurement with different sensor</u>

Material used:

- Different sensors used to temperature measurement:
 - Thermocouple K stainless steel, 0.5mm diameter (RS No 443-7939)

- Thermocouple T (RS No 621-2164)

0

- PT100, IST INNOVATIVE SENSOR TECHNOLOGY P0K1.202.3FW.A.007 (Farnell No 2191840), size 2mm*2mm
- PT100, Labfacility DM314 class A (Farnell No 1289670), size 1.2mm*1.6mm

• Compact DAQ card NI 9219 (resistance 4 wires), NI 9217 (Pt100), NI 9211 (Thermocouple)

Software used : Read_Record_thermocouple.vi Read_Record_RTD

Assembly:

All the sensors are on the surface, in the middle of a power resistance 30Ω 50W, in paralelel with another one. A kapton tape is added to ensure a good contact.

Measures / Results:

> <u>Temperature measurement on HTS SpotHeater (Air and N2 liquide)</u>

Material used:

- 2 sensors used to measure temperature :
 - PT100, IST INNOVATIVE SENSOR TECHNOLOGY P0K1.202.3FW.A.007 (Farnell No 2191840), size 2mm*2mm

PT100, Labfacility DM314 class A (Farnell No 1289670), size 1.2mm*1.6mm

• Data acquisition system Compact CompacDAQ chassi NI cDAQ-9178 USB

- Compact DAQ card NI 9217 (Pt100)
- Soft Read_Record_RTD
- High power signal generator for HTS

Assembly:

All the sensors are on the surface in the middle of a power resistance 30Ω 50W in parallel with another one. A kapton tape is added to ensure a good contact.

Measures / Results:

The liquid nitrogen temperature is at the limit of Pt100 range. In liquid nitrogen the temperature response is really different. Maybe some N2 gas affects the thermal exchange between the SH and the sensor.

> <u>Temperature measurement on HTS feather.zero.0</u>

Material used:

4 carbon ceramic sensors TMi-CCS

- 1 HTS Spot heater design 2
- High power signal generator for HTS
- Coil HTS feather.zero.0 (one end is cut)
- Data acquisition system Compact CompacDAQ chassi NI cDAQ-9178 USB
- Compact DAQ card NI 9219 (resistance 4 wires), NI 9217 (Pt100), NI 9211 (Thermocouple)
- Software "Main_SpotHeater_CCS_RTD_tempereature_DAQ" This labview interface is able to control the high power signal generator and performs temperature acquisition.

Channel Settings	Data to Write		
ine(s)	Data to write		
CAQ3Mod4(port0/line1	Digital Data Digital Waveform Graph]
Timing and Buffer Settings anple Clock Source Crower dClock Crower dCloc	00 10 31 31 31 31 31 31 35 35 35 35 35 35 35 35 35 35	2 3 4 5 6 Sample	7 ë 9 10
10			
Trigger Settings - Pov	ver supply Tri	gger Settings - DAQ	
No Trigger Digital Start T To configure and use a start trigger you must selected above. Not all hardware supports to device documentation for mare info.	No Trigger Digital Start theve the necessary tab gogering-refer to your selected above. Not all har documentation for more info	Analog Start htigger you muit have the necessary tab here supports triggering-refer to your device	
Channel Settings BID	Changel Combany COC	Channel Settines Voltage	
hysical Channel	Hysical Channel CCS	Physical Channel 2	Logging Settings Logging mode
c0AQ3Mod2/a0:2	CDAQ3Mad5/a0:3	CAQ2Mod1/e0:1	(+) Off
Ininum Value (deg C) Maximum Value (deg	c) minimum value maximum value	Max Voltage Hin Voltage	TDHS File Path
tesistance Conflouration		Terminal Configuration	
* 4-Wre	Offset CCS1_Offset CCS2_Offset CCS3_Offset CCS4	C default	
Current Excitation Source Current Excitation Va			Timing Settings
[] Internal [] 0.00100	Array (KL-K7)		, , , , , , , , , , , , , , , , , , ,
	0.275714570569107		Sample Clock Source 2
RTD Type	-75.0494781241286		Serrole Rate 2 Arbol Sarrole Rate 3
Pt3851	389.250152014903	Stop	100
C 100.00	-833.093840633518	data sent	Number of Samples 2
	0,00050 -198,693004417698		100
5-			-72
4.5-			-71
4-			-30.5
3.5-			-30
3-			-60.5
8 2.5-			-69
3			-(4.5
20			-64
1.5+			-62.5
1-			-67
0.5-			-64.5
0-			
01.00.00.0 01.00.05.0 01.00.10.0	0 01:00/15:0 01:00/25:0 01:00/25:0 01:00/30:0 Time	01:00:35.0 01:00:40.0 01:00:45.0 01:00	150.0 01100155.0 01100159.9
SH relay Spot heater voltage	RTD1 RTD2 RTD3	CCS1 CCS2 CCS3	CC54

The software measures and records the temperature using 2 Pt100 and 4 CCS sensors. The CCS resistance values are directly converted in temperature using

specific adaptable coefficients and offset. The measurement and the signal generator are started using a common external trigger.

Assembly:

HTS feather0_0 is a coil made off 5 turns on one side using HTS dummy cable. The SH is directly in contact with the coil on the inner side.opposite to the layer jump.

The SH is hold in place with a kapton tape. Some thermal Apiezon grease is added between the coil and the SH.

CCS are placed on the SH and on the outer side of the coil. The sensor is hold in contact using a kapton tape and thermal grease.

To improve the contact, all the system is tight between small plastic pliers using 2 thick silicon strips

Exact position of the CCS sensor:

The SH in the middle of the coil straight section

1 CCS is in the middle of the SH design 2 (x= 0mm)

1 CCS is on the SH shifted by 10mm (x= 10mm)

1 CCS on the outer side of the coil and in the middle (x= 0mm)

1 CCS on the outer side of the coil shifted by 10mm (x = 10mm)

The measurement is performed in nitrogen gas. The sensors and the SH are not plunged in

the nitrogen. The liquid level is just below the SH. So the temperature of the sensor is a little bit below 100K.

In the isotherm box the coil is not horizontal but tilted. The non-connexion coil side is immersed in LN2.

Measures / Results:

Measurement have been performed using different pulse duration: 500ms, 700ms, 900ms, 1200ms, 1400ms, 1600ms and 1800ms.

There is a delay about 4.5s between the SH temperature raising and the CCS temperature measurement on the opposite side. The thermal conductivity in the transverse way with only 5 turns is not high-performance (insulation layer, resin,...)

HTS Feather.zero.0																
	Temperature measurement															
Bulco	3.5V			3.5V			3.5V				3.5V					
Fuise	50A				50A				50A				50A			
Shuesighz	500	ms			700 ms				900 ms				1200 ms			
	Out	er coil	coil On SH			er coil	Or	SH	Oute	er coil	On	SH	Outer coil		On SH	
Sensor position	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm
delta temperature	1.0	0.9	4.4	4.9	1.3	1.1	5.9	6.7	1.6	1.4	7.0	7.9	2.1	1.8	8.5	9.6
delay SH-outer coil		465	0ms		4880ms				4290ms				4170ms			

Pulso	3.5V				3.5V				3.5V					
SH docign2	50A				50A				50A					
Shuesighz	1400	ms			1600 ms				1800 ms					
	Out	er coil	On SH		Outer coil		On SH		Outer coil		On SH			
Sensor position	x=0mm	0mm x=10mm x=0mm x=10mm		x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm	x=0mm	x=10mm			
delta temperature	2.2 1.8 9.4 10.6		2.3 2.0		10.1 11.5		2.5	2.2	10.8	12.3				
delay SH-outer coil		463	0ms			455	0ms		4180ms					

> <u>Temperature measurement on HTS feather.zero.0 with copper tape wrapping</u>

Material used:

- 4 carbon ceramic sensors TMi-CCS
- 1 HTS Spot heater design 2
- High power signal generator for HTS
- Coil HTS feather.zero.0 (one end is cut)
- Data acquisition system Compact CompacDAQ chassi NI cDAQ-9178 USB
- Compact DAQ card NI 9219 (resistance 4 wires), NI 9217 (Pt100), NI 9211 (Thermocouple)
- Software "Main_SpotHeater_CCS_RTD_tempereature_DAQ"
- Copper tape

Assembly:

The SH is directly in contact with the coil on the inner side opposite to the layer jump.

The SH is hold in place with a kapton tape. Some thermal grease Apiezon is added between the coil and the SH.

A copper tape surrounds the coil and the SH.

On each side, a layer of kapton tape is added to insulate CCS sensor from the copper.

CCS hold in contact with kapton tape and thermal grease, plastic pliers and silicone strips as the previous assembly.

Exact position of the CCS sensor:

The SH in the middle of the coil straight section.

- 1 CCS is in the middle of the SH design 2 (x= 0mm)
- 1 CCS is on the SH shifted by 10mm (x= 50mm)
- 1 CCS on the outer side of the coil and in the middle (x= 0mm)
- 1 CCS on the outer side of the coil and shifted by 50mm (x = 50mm)

The measurement is performed in N2 gas as the previous assembly. This time the temperature is about 90K.

Measures / Results:

Measurements have been performed using different pulse duration: 500ms, 700ms, 900ms, 1400ms and 1800ms

	HTS Feather.zero.0 with copper tape wrapped around															
	Temperature measurement															
Dulco	3.5V				3.5V				3.5V				3.5V			
SH design2	50A				50A				50A				50A			
	500	ms			700 ms				900 ms				1400 ms			
	Oute	r coil	Or	SH	Outer coil		On SH		Outer coil		On SH		Outer coil		On SH	
Sensor position	x=0mm	x=50mm	x=0mm	x=50mm	x=0mm	x=50mm	x=0mm	x=50mm	x=0mm	x=50mm	x=0mm	x=50mm	x=0mm	x=50mm	x=0mm	x=50mm
delta temperature	0.9	0.5	2.8	0.5	1.3	0.9	3.8	0.9	1.5	0.9	4.5	0.8	2.2	1.1	6.3	1.0
delay SH-outer coil	360ms				260ms				390ms				410ms			

The delay between SH temperature rising and the CCS response on the opposite side is reduce. The delay is about 400ms.

The copper tape wrapped around the coil strongly increase the transverse thermal conductivity.

In the longitudinal coil section, the copper tape reduce the delay too but the signal amplitude is lower.

To keep a high signal range the shift between sensors must be reduced.

