## Indirect search for Dark Matter : interpretation

Pierre Salati - Université de Savoie \& LAPTH

## Outline

1) Evidence for primary cosmic ray positrons
2) DM species with quite special properties
3) The effect of clumpiness on DM annihilation
4) Decaying dark matter
5) Perspectives more than conclusions


COSMO 09 - CERN - September 9, 2009

1) Evidence for primary cosmic ray positrons

## 



- Primary $e^{-}$from SN driven shock waves
- Secondary $\mathrm{e}^{-} \& \mathrm{e}^{+}$from CR spallations

$$
\Phi_{\mathrm{e}} \propto E^{-\alpha-1 / 2-\delta / 2}
$$

$$
K(E)=K_{0} \beta \mathcal{R}^{\delta}
$$

- $\Phi_{\text {primary } \mathrm{e}^{-}} \propto E^{-3}$
- $\Phi_{\text {secondary } \mathrm{e}^{ \pm}} \propto E^{-3.5}$

| Model \# | $D_{0}\left(\mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$ | $\delta$ | $z_{h}(\mathrm{kpc})$ | $\gamma_{0}$ | $N_{e^{-}}\left(\mathrm{m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{GeV}^{-1}\right)$ | $\gamma_{0}^{p}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $3.6 \times 10^{28}$ | 0.33 | 4 | 2.54 | $1.3 \times 10^{-4}$ | 2.42 |
| 1 | $3.6 \times 10^{28}$ | 0.33 | 4 | 2.42 | $1.3 \times 10^{-4}$ | 2.42 |
| 2 | $1.3 \times 10^{28}$ | 0.60 | 4 | 2.33 | $1.3 \times 10^{-4}$ | 2.1 |

T. Delahaye et al. (2008)


Evidence for Primary Positrons


## Indirect signatures of DM species

Weakly Interacting Massive particles - WIMPs - may be the major component of the haloes of galaxies. Their mutual annihilations would produce an indirect signature of high-energy cosmic rays :
$\chi+\chi \rightarrow q \bar{q}, W^{+} W^{-}, \ldots \rightarrow \gamma, \bar{p}, \bar{D}, e^{+} \& \nu^{\prime} s$


Antimatter is already manufactured inside the galactic disk

## PAMELA positron excess

May be the first indirect hint that DM species annihilate in the MW.

$$
\Gamma_{\mathrm{ann}} \equiv\langle\sigma v\rangle \times \frac{\rho_{\chi}^{2}}{m_{\chi}^{2}} \text { needs to be enhanced }
$$

$$
\langle\sigma v\rangle=3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \rho_{\odot}=0.3 \mathrm{GeV} \mathrm{~cm}^{-3} \& m_{\chi}=1 \mathrm{TeV} \Rightarrow \Gamma_{\mathrm{ann}} \times 10^{3}
$$

2) DM species with quite special properties

- Large $\langle\sigma v\rangle$ but different thermal decoupling (quintessence).
- Large $\langle\sigma v\rangle$ but non-thermal decoupling (gravitino decay).
- Sommerfeld effect : a non-perturbative enhancement of $\langle\sigma v\rangle$ at low velocity.

- Antmprotons are not protuced $\Rightarrow$ leptophilic TVINP?


Sommerfeld effect - a non-perturbative enhancement of $\sigma_{\text {ann }}$ at low velocity

## J. Hisano, S. Matsumoto and M. M. Nojiri

M. Pospelov \& A. Ritz, Phys. Lett. B671 (2009) 391
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer \& N. Weiner, Phys. Rev. D79 (2009) 015014

$$
\sigma=\sigma_{0}\left(1+\frac{v_{e s c}^{2}}{v^{2}}\right)
$$


a) $\chi$




## PAMELA positron excess

May be the first indirect hint that DM species annihilate in the MW.

$$
\Gamma_{\mathrm{ann}} \equiv\langle\sigma v\rangle \times \frac{\rho_{\chi}^{2}}{m_{\chi}^{2}} \text { needs to be enhanced }
$$

$$
\langle\sigma v\rangle=3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \rho_{\odot}=0.3 \mathrm{GeV} \mathrm{~cm}^{-3} \& m_{\chi}=1 \mathrm{TeV} \Rightarrow \Gamma_{\mathrm{ann}} \times 10^{3}
$$

2) DM species with quite special properties

- Large $\langle\sigma v\rangle$ but different thermal decoupling (quintessence).
- Large $\langle\sigma v\rangle$ but non-thermal decoupling (gravitino decay).
- Sommerfeld effect : a non-perturbative enhancement of $\langle\sigma v\rangle$ at low velocity.


## Beware of the other messengers !

- Antiprotons are not produced $\Rightarrow$ leptophilic WIMP.

$$
\begin{gathered}
\chi \chi \rightarrow l^{+} l^{-} \\
\chi \chi \rightarrow \phi \phi \rightarrow l^{+} l^{-} l^{+} l^{-} \text {through } \phi \rightarrow l^{+} l^{-}
\end{gathered}
$$

## Antiprotons should not be overproduced

Quark channels are suppressed - purely leptophilic DM candidate

M. Cirelli ${ }^{a}$, M. Kadastik ${ }^{b}$, M. Raidal ${ }^{b}$, A. Strumia ${ }^{c}$

DM with $M=150 \mathrm{GeV}$ that annihilates into $W^{+} W^{-}$




DM with $M=1 \mathrm{TeV}$ that annihilates into $\mu^{+} \mu^{-}$




## Constraints on WIMP Dark Matter from the High Energy PAMELA $\bar{p} / p$ data




FIG. 3: The fiducial case of a 1 TeV LSP annihilating into a $W^{+} W^{-}$pair is featured. In the left panel, the positron signal which this DM species yields has been increased by a factor of 400 , hence the solid curve and a marginal agreement with the PAMELA data. Positron fraction data are from HEAT [18], AMS-01 [5, 22] and PAMELA [2]. If the so-called Sommerfeld effect $[7]$ is invoked to explain such a large enhancement of the annihilation cross section, the same boost applies to antiprotons and leads to an unacceptable distortion of their spectrum as indicated by the red solid line of the right panel.
F. Donato et al. - arXiv:0810.5292 - PRL 102 (2009) 071301


Are WIMPs really leptophilic?
in $10^{-5}$ PROPAGATION UNCERTAINTY BAND


| Case | $\delta$ | $K_{0}\left[\mathrm{kpc}^{2} / \mathrm{Myr}\right]$ | $L[\mathrm{kpc}]$ | $V_{C}[\mathrm{~km} / \mathrm{s}]$ | $V_{a}[\mathrm{~km} / \mathrm{s}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MIN | 0.85 | 0.0016 | 1 | 13.5 | 22.4 |
| MED | 0.70 | 0.0112 | 4 | 12 | 52.9 |
| MAX | 0.46 | 0.0765 | 15 | 5 | 117.6 |

## 2) DM species with quite special properties

- Large $\langle\sigma v\rangle$ but different thermal decoupling (quintessence).
- Large $\langle\sigma v\rangle$ but non-thermal decoupling (gravitino decay).
- Sommerfeld effect : a non-perturbative enhancement of $\langle\sigma v\rangle$ at low velocity.


## Beware of the other messengers !

- Antiprotons are not produced $\Rightarrow$ leptophilic WIMP.

$$
\begin{gathered}
\chi \chi \rightarrow l^{+} l^{-} \\
\chi \chi \rightarrow \phi \phi \rightarrow l^{+} l^{-} l^{+} l^{-} \quad \text { through } \phi \rightarrow l^{+} l^{-}
\end{gathered}
$$

- Even though, strong constraints from the other messengers :
$\checkmark$ Synchrotron radio emission from $\mathrm{e}^{ \pm}$spiraling in $\mathbf{B}$.
$\checkmark$ Inverse Compton Scattering on CMB and stellar light.
$\checkmark$ Final State Radiation $\gamma$-rays in the absence of quarks.

$$
\chi \chi \rightarrow l^{+} l^{-} \gamma \quad \text { or } \quad \phi \rightarrow l^{+} l^{-} \gamma
$$

## SECONDARY RADIATION FROM THE PAMELA/ATIC EXCESS AND RELEVANCE FOR FERMI



## E. Borriello, A. Cuoco \& G. Miele, arXiv:0903.1852



Gamma Sky Bkg + Dark Matter at $10 \mathrm{GeV} \mathrm{E}^{2} * \mathrm{dN} / \mathrm{dE}$


Gamma Sky Bkg + Dark Matter at $10 \mathrm{GeV} \mathrm{E}^{2} * \mathrm{dN} / \mathrm{dE}$



Fig. 3.- Top panel: Background and DM (either annihilating and decaying) latitude gamma profiles averaged in a strip of $60^{\circ}$ along $l=0$ compared with the EGRET data. Bottom panel: same as above, but with the errors expected with a 1 yr survey from Fermi. At high latitudes the error bars appear artificially to increase for the geometry of the $0.5^{\circ}<|l|<30.5^{\circ}$ strip (which is effectively shrinking along $b$ ).
M. Cirelli \& P. Panci, arXiv:0904.3830


## Constraints from FSR $\gamma$-rays and radio

G. Bertone, M. Cirelli, A. Strumia \& M. Taoso, arXiv:0811.3744



## Central DM profile flatter or $\Gamma_{\odot}>\Gamma_{\mathrm{GC}}$

DM DM $\rightarrow e^{+} e^{-}$, isothermal profile

L. Bergström et al., arXiv:0812.3895

S. Gallia, F. Iocco, G. Bertone \& A. Melchiorri, arXiv:0905.0003
T. Slatyer, N. Padmanabhan \& D. Finkbeiner, arXiv:0906.1197






FIG. 5: CMB power spectra for three different DM annihilation models, with power injection normalized to that of a 1 GeV WIMP with thermal relic cross section and $f=1$, compared to a baseline model with no DM annihilation. The models give similar results for the TT (left), TE (middle), and EE (right) power spectra. This suggests that the CMB is sensitive to only one parameter, the average power injected around recombination. All curves employ the WMAP5 fiducial cosmology: the effects of DM annihilation can be compensated to a large degree by adjusting $n_{s}$ and $\sigma_{8}$ [4].

## PAMELA positron excess

May be the first indirect hint that DM species annihilate in the MW.

$$
\Gamma_{\mathrm{ann}} \equiv\langle\sigma v\rangle \times \frac{\rho_{\chi}^{2}}{m_{\chi}^{2}} \text { needs to be enhanced }
$$

3) The effect of clumpiness on DM annihilation
```
DM substructures have }\langle\mp@subsup{\rho}{}{2}\rangle\geq\langle\rho\mp@subsup{\rangle}{}{2}
```

- A statistical analysis is necessary to compute the signal enhancement.

$$
B_{\text {Milky Way }} \leq 20 \text { in } \Lambda \mathrm{CDM}
$$

- A single nearby clump - how probable is it ?
- A single nearby clump - what about the other messengers ?
- Are minispikes about IMBHs a myth ?


## Boost factors : a hazardous kind of magic

## CURRENT JACKPOT

## Til $10^{66}$ neutralinos

Estimated for 3/31/2006
J. Lavalle, J. Pochon, P.S. \& R. Taillet, A\&A 462 (2007) 827
J.Lavalle, J.Pochon, P.Salati \& R.Taillet (2006)

J. Lavalle, J. Pochon, P.S. \& R. Taillet, A\&A 462 (2007) 827
J.Lavalle, J.Pochon, P.Salati \& R.Taillet (2006)

J. Lavalle, J. Pochon, P.S. \& R. Taillet, A\&A 462 (2007) 827
J.Lavalle, J.Pochon, P.Salati \& R.Taillet (2006)

J. Lavalle, J. Pochon, P.S. \& R. Taillet, A\&A 462 (2007) 827
J.Lavalle, J.Pochon, P.Salati \& R.Taillet (2006)


# How <br> pro <br> bable <br> is <br> that ? <br> ? 



$$
\begin{aligned}
& \text { HroAT datast } \\
& \mathrm{M}_{\mathrm{cl}}=10^{7} \mathrm{M}_{\text {sol }}-\mathrm{B}_{\mathrm{c}}=200 \\
& \rho \propto \mathrm{r}^{-2}\left(\mathrm{r}_{\mathrm{c}}=0.5 \mathrm{kpc}\right) \\
& \mathrm{m}_{\mathrm{LZP}}=50 \mathrm{GeV}\left(\mathrm{~m}_{\mathrm{KK}}=6 \mathrm{TeV}\right)
\end{aligned}
$$



The cosmic ray lepton puzzle in the light of cosmological N -body simulations
P. Brun, T. Delahaye, J. Diemand, S. Profumo \& P. Salati, arXiv:0904.0812

T. Bringmann, J. Lavalle \& P. Salati, arXiv:0902.3665

$$
\Gamma=\frac{1}{2}\langle\sigma v\rangle\left(\rho_{0} / m_{\chi}\right)^{2} \xi
$$






|  | PAMELA |  | ATIC | Fermi |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m}_{\chi}(\mathrm{GeV})$ | 100 | 1000 | 1000 | 2500 |
| $\mathrm{e}^{+} / \mathrm{e}^{-}$ | $1.22-1.07 \cdot 10^{7}$ | $0.78-3.56 \cdot 10^{9}$ | $1.52-2.98 \cdot 10^{9}$ | $2.68-5.53 \cdot 10^{10}$ |
| $\mathrm{e}^{ \pm}+\mu^{ \pm}+\tau^{ \pm}$ | $0.44-2.51 \cdot 10^{7}$ | $0.27-9.84 \cdot 10^{9}$ | $0.25-8.78 \cdot 10^{9}$ | $2.81-2.17 \cdot 10^{11}$ |

TABLE I: Best fit values of the $(D ; L)$ couple in units of $\left(\mathrm{kpc} ; \mathrm{M}_{\odot}^{2} \mathrm{pc}^{-3}\right)$ for various DM particle masses and annihilation channels.

# Full Calculati <br> Cosmic Rays i 

Ab

| Clump description | Values |
| :---: | :---: |
| $d \mathcal{P}_{V}(r) / d V$ | Cored $^{\ddagger}$ or NFW |
| Inner profile | NFW $^{\ddagger}$ or Moore |
| $\alpha_{\mathrm{m}}$ | $\left[1.8-1.9^{\ddagger}-2.0\right]$ |
| $M_{\text {min }}$ | $\left[10^{-6 \ddagger}-1-10^{6}\right] M_{\odot}$ |
| $c_{\text {vir }}-M_{\text {vir }}$ | $\mathrm{BO1}^{\ddagger}$ or ENS01 |

## r Antimatter slation results

tt?

Table 2. Description of the various configurations used in the paper for the sub-halo parameters.


Fig. 1. The mass fraction $f_{M}$ of DM in clumps is set once $M_{\text {min }}$ and $\alpha_{\mathrm{m}}$ are chosen. This fraction can be directly read off the graph for various $\alpha_{\mathrm{m}}$ (from 2.1 down to 1.7 - top to bottom curves) and various $M_{\text {min }}$ (from $10^{8} M_{\odot}$ down to $10^{-8} M_{\odot}$, xaxis).


Fig. 1. The dependence of $c_{v i r}$ on the halo mass $M$, at $z=$ 0 , as in the Bullock et al. toy model (solid line) and in the ENS toy model (dashed line); predictions are compared to a few sets of simulation results in different mass ranges. A flat, vacuum-dominated cosmology with $\Omega_{M}=0.3, \Omega_{\Lambda}=$ $0.7, h=0.7$ and $\sigma_{8}=1$ is assumed here.

## $B_{\text {Milky Way }} \leq 20$ in $\Lambda \mathrm{CDM}$



Fig. 6. Extreme cases for the DM configurations: sub-halo antimatter fluxes associated with the maximal, reference and minimal DM configurations (medium set of propagation parameters). Left/right: fluxes/boosts and corresponding $1-\sigma$ contours. Top/bottom: positrons/anti-protons. See details in the text.

## Dark matter mini-spikes around IMBHs

G. Bertone, A.R. Zentner \& J. Silk, PRD 72 (2005) 103517

When the first DM halos form, gas cools and collapses as pressure supported disks

A baryonic mass of $\sim 10^{5} \mathrm{M}_{\odot}$ looses its angular momentum
It is transferred at the center to form an Intermediate Mass Black Hole

During the process, DM is adiabatically compressed onto this central object

Adiabatic DM compression around the IMBH



Large annihilation volume .84 pc

${ }_{\xi}$ Compensation between $\rho_{\max } \&\left\langle\sigma_{\mathrm{ann}} v\right\rangle_{\mathrm{JV}}$
gamma ray flux at the Earth from a single mini-spike

$$
\begin{gathered}
\Phi_{\gamma} \simeq 3.315 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \times \frac{\tilde{\xi} / d^{2}}{10^{4} \mathrm{kpc}} \times \mathcal{F}\left(m_{\chi},<\sigma v>\right) \\
\mathcal{F}\left(m_{\chi},<\sigma v>\right)=\left\{\frac{N_{\gamma}}{100}\right\} \times\left\{\frac{m_{\chi}}{1 \mathrm{TeV}}\right\}^{-9 / 7} \times\left\{\frac{<\sigma v>}{3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}\right\}^{2 / 7} \\
\Phi \operatorname{EGRET}_{\max }=2 \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~S}^{-1}
\end{gathered}
$$



## T. Bringmann, J. Lavalle \& P. Salati, arXiv:0902.3665

## DM mini-spike around an IMBH





$$
\langle\sigma v\rangle=3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}
$$

FIG. 2: The solid lines give the EGRET constraints on the DM annihilation rate $\Gamma=\frac{1}{2} \sigma v\left(\rho_{0} / m_{\chi}\right)^{2} \xi$ of a nearby, generic DM point-source at a distance $d$ from the Earth; from left to right, we show the case of KK DM and a fiducial DM candidate annihilating to $e^{+} e^{-}$and $\mu^{+} \mu^{-}$, respectively. The dashed lines show the $\Gamma$ needed to fit the PAMELA data, for sets of propagation parameters as defined in [23]; in the dark shaded area this would produce an $e^{ \pm}$flux in conflict with the Fermi data at higher energies. For comparison, the dotted line indicates $\Gamma$ for the whole Milky Way, assuming $\langle\sigma v\rangle \sim 3 \cdot 10^{-26} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$.

## PAMELA positron excess

May be the first indirect hint that DM species annihilate in the MW.

$$
\Gamma_{\mathrm{ann}} \equiv\langle\sigma v\rangle \times \frac{\rho_{\chi}^{2}}{m_{\chi}^{2}} \text { needs to be enhanced }
$$

3) The effect of clumpiness on DM annihilation

$$
\text { DM substructures have }\left\langle\rho^{2}\right\rangle \geq\langle\rho\rangle^{2} \text {. }
$$

- A statistical analysis is necessary to compute the signal enhancement.

$$
B_{\text {Milky Way }} \leq 20 \text { in } \Lambda \mathrm{CDM}
$$

- A single nearby $\Lambda C D M$ clump is very improbable.
- Moreover, EGRET constrains the WIMP to be leptophilic.
- If so, IMBH could be a solution although future strong limits from FERMI.


## PAMELA positron excess

May also be an indication that DM species decay in the MW.

$$
\begin{gathered}
\Gamma_{\mathrm{ann}} \equiv\langle\sigma v\rangle \times \frac{\rho_{\chi}^{2}}{m_{\chi}^{2}} \Rightarrow \Gamma_{\mathrm{ann}} \equiv \Gamma_{\mathrm{dec}} \times \frac{\rho_{\chi}}{m_{\chi}} \\
\langle\sigma v\rangle=3 \times 10^{-23} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \rho_{\odot}=0.3 \mathrm{GeV} \mathrm{~cm} \\
\forall \\
\Downarrow \\
\Gamma_{\mathrm{dec}} \sim 10^{-26} \mathrm{~s}^{-1}=1 \mathrm{TeV}
\end{gathered}
$$

## 4) Decaying dark matter

- Decaying DM species still pass the astrophysical tests since $\Gamma_{\text {ann }} \propto \rho_{\chi}$.
- The lifetime needs to be fine-tuned though.
- Why is it so large - dimension 5 or 6 operators ?
- FERMI should be able to detect the ICS WIMP signal.


## P. Meade, M. Papucci, A. Strumia \& T. Volansky, arXiv:0905.0480








## E. Borriello, A. Cuoco \& G. Miele, arXiv:0903.1852



Gamma Sky Bkg + Dark Matter at $10 \mathrm{GeV} \mathrm{E}^{2} * \mathrm{dN} / \mathrm{dE}$


Gamma Sky Bkg + Dark Matter at $10 \mathrm{GeV} \mathrm{E}^{2} * \mathrm{dN} / \mathrm{dE}$



Fig. 3.- Top panel: Background and DM (either annihilating and decaying) latitude gamma profiles averaged in a strip of $60^{\circ}$ along $l=0$ compared with the EGRET data. Bottom panel: same as above, but with the errors expected with a 1 yr survey from Fermi. At high latitudes the error bars appear artificially to increase for the geometry of the $0.5^{\circ}<|l|<30.5^{\circ}$ strip (which is effectively shrinking along $b$ ).

## 5) Perspectives more than conclusions

## No coherent picture yet!

- Leptophilic vs CR propagation : are normal WIMPs really excluded ?
- DM clumpiness alleviates the tension from GC constraints.
- Sommerfeld effect combined with DM clumps \& CR propagation.
- WIMP decay is OK although fine-tuned.



## FERMI will soon explore these possibilities

## 介

## Astrophysical explanations of the $\mathrm{e}^{+}$excess

- Local pulsars with an injection spectral index of 1.5 ?
- Spallation \& reacceleration in SN shock waves?




The origin of the positron excess in cosmic rays
Pasquale Blasi
Acceleration and spallation in SN shock waves

$\mathrm{B} / \mathrm{C}$ and $\bar{p} / p$ should increase at high E

## Ahmed Boulares

Physics Department, Space Physics Laboratory, University of Wisconsin-Madison
Received 1988 October 24; accepted 1988 December 29


The Astrophysical Journal, 342:807-813, 1989 July 15

## Galactic CR propagation



