
A.Formica: ATLAS - Belle - CMS
Conditions Think Tank 2015/12/10

Conditions Database
for Run3

Proposal for a REST architecture
A.Formica on behalf of Atlas DB team

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Topics
• Conditions data

‣ usage in Atlas data flows

• Database schema

‣ based on CMS Run2 experience

• Architecture to manage Conditions data

‣ REST services for conditions

• Link to previous presentations….

‣ Tim workshop in Genova, https://indico.cern.ch/event/342881/session/9/contribution/21/attachments/1159952/1669544/

Report_from_DB_TIM.pdf

‣ CHEP 2015, http://indico.cern.ch/event/304944/session/3/contribution/5/material/slides/0.pdf

http://www.apple.com
https://indico.cern.ch/event/342881/session/9/contribution/21/attachments/1159952/1669544/Report_from_DB_TIM.pdf
https://indico.cern.ch/event/304944/session/3/contribution/5
http://indico.cern.ch/event/304944/session/3/contribution/5/material/slides/0.pdf

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Conditions data

• A definition attempt

‣ in general they are non-event data varying with time

‣ a specific subset is critical for the data flow
- Status and Configuration for detectors and Trigger
- Run information
- Detector control system: HV, LV, ….
- Detector calibrations (calibrations, alignments, …)
- Beam and Luminosity information

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Dataflows

Data
Taking Monitoring Express

Reco
Prompt
Reco Reprocessing

Conditions DB

• usage

‣ conditions data are used and produced at different steps of our dataflows

‣ calibrations are refined in the express and prompt reconstruction

‣ in general data reprocessing should benefit of the best knowledge we have
on our calibrations

Experiment Tier 0 Tier 0 - N

time

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

the Conditions DB : intro
• A common project (ATLAS / CMS)

‣ CMS has developed during LS1 a new database schema trying to simplify a lot the structure
respect to Run1: this schema is today in production and used for Run2

‣ ATLAS has shown interest in this project, since the main concepts that CMS has been using for
this new DB architecture are very similar to those who have been identified as useful from our
Run1 experience, but the changes in core software needed to implement the new schema and
adopt it are pretty big: so we aim for Run3 !!

‣ Other developments have been triggered by this collaboration, which are more related to the
data management and access

• Data model

‣ we will enter in some details at the level of the DB structure, but here I think that further

discussions should be more profitable if our CMS collegues are present: they have a production
system and they can justify or provide feedback on the choices that were made

• Towards a REST architecture

‣ we will enter in some details about the architecture for the conditions data management: this is

an going development, and the choices have to be evaluated by DB coordination in both
experiments

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Data model
GLOBAL TAG
name (unique id)
snapshot : used for versioning
insertion time
validity

GLOBAL TAG MAP
global tag name
tag name

IOV
time type (run/lumi, time, ...)
since : open intervals only
insertion time: versioning
hash: payload reference

TAG
name (unique id)
endOfValidiy : close last iov
insertion time: versioning
object type: serialization
record: client software

PAYLOAD
hash
BLOB: serialized objects

SYSTEM
name (unique id)
tagrootname : a generic tag

ROLES
name (unique id)
role : the role

Monitoring
Monitoring

Monitoring

some additional tables (TBD)

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Data model in words
• Conditions data

‣ Payload : values are consumed as an aggregated set,
typically an header and some parameter container (s)

• Conditions metadata

‣ IOV: time information, based on 1 time column (time, run

number, …), valid until the next entry in time 
an IOV point to 1 payload (via an sha256 hash)

‣ Tag: label to identify a specific set of IOVs

‣ Global Tag: consistent set of tags, involved in a given data-
flow. A tag can be associated to many global tags.

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Payload
• A binary large object

‣ the payload is stored as a BLOB inside the DB, leaving to the users the choice
of the implementation

‣ metadata present in the Tag table allow to deserialize the BLOB in the correct
way

• no generic implementation

‣ CMS has chosen for several reason a Boost library to serialize and deserialize

the DB content

‣ other choices are possible (ROOT, HDF5, …), some of them available for
multiple languages

• remarks (suggestions?)

‣ the choice is a compromise between optimisation and flexibility

‣ multi-language support could be useful

‣ avoid too many serialization formats…

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

conditions data management
• Lessons from the past

‣ in our data-flows, we write occasionally but we read a lot, and
from a large number of clients

‣ client-server model could fit for writing but not for reading; in the
distributed computing context we are using an intermediate server
to access the data (Frontier)

‣ bounding the API to a couple of languages we limit the usage from
different clients

• DB technology

‣ today we are happy about Oracle (mainly thanks to the support

we have at CERN)

‣ we should in any case support multiple DB platforms

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

a REST architecture
• Multi-tier model for conditions data management

‣ enforcing the role of the middle tier for conditions management would
allow us to isolate the client from any complicated software strictly DB -
related

‣ simplification client software allow as well an easier management of the
client libraries and queries optimisation are less intrusive (no need to
release a new client version)

• something pretty common nowadays

‣ a lot of the daily interaction with external services is done today via

REST architectures

‣ we already use a sort of REST architecture (or at least we use HTTP) to
access conditions in both experiments

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

NOSQL(?)

Event processing

Software
Framework

C++ REST client

Python REST client

Web Server

CondDB - Server

Persistency

Security

WEB controllers (servlet)

SQUID cache

Java REST client

HTTP(S)

Interceptors: monitoring, security

Monitoring

Json,Xml

SQL Conditions DB

architecture for Run3

rest/tags/{id} : list info on tag <id>
rest/globaltags/{id}?trace=on : trace global tag <id>

expert/tags {tag-obj} : create a tag
expert/tags/{id} : delete tag <id>

GET:
POST:

DELETE:

Remarks:
use standard libraries for
persistency 

multiple DB support portable
format in requests (Json) 

follow REST design in URLs

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

prototyping
• inside GPN

• Initial
documentation for
testing

‣ swagger for (almost)
automatic
generation

• python and C++
clients

‣ clients development
is on going (Grigory
Rybkin)

- doc http://aiatlas062.cern.ch:8080/swagger/
- code https://gitlab.cern.ch/formica/PhysCondDB (branch: swagger-tests)

http://aiatlas062.cern.ch:8080/swagger/
https://gitlab.cern.ch/formica/PhysCondDB

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

on going
• ATLAS

‣ follow up the developments needed in code software

‣ calibration for analysis: deploy a prototype in the context of
calibration files related to end users analysis

‣ C++ client development for the REST services

‣ investigate Payload serialization solutions

• CMS (TBC)

‣ starting next year: give feedback on the prototype

‣ use the present data to study the performances and participate to the
developments

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

spare slides
• Some numbers from Run1

• Producing conditions

‣ lot of similarities in ATLAS and CMS, even if a completely

different implementation is used

• Consuming conditions

‣ here I will mention how the new architecture works…but

since this is for CMS, forgive any incompleteness:
Giacomo Govi and Andreas Pfeiffer are the real experts !

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Data volume in Run 1
• ATLAS & CMS

‣ about 1.5 TB of conditions data gathered in Run1

• ATLAS

‣ Most data (about half of the whole volume) are coming from

DCS (HV, LV, temperatures,..) and they are time based by nature
(in reality these are timeseries) and not versioned

‣ Usually calibrations-like conditions are instead versioned and
run/lumi-block based

‣ IOVs can vary a lot, from ~10 to 100K (e.g. luminosity)

‣ Payload size is also very variable: ~few bytes to ~O(10Mb)

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

Producing conditions
• Reprocessing data-flow

‣ In general here the conditions are frozen, no update is performed at
this level

‣ Systems try to deliver the best conditions “before”

• Express and prompt reconstruction

‣ these steps happens in a range from hours to ~1day from data

taking, and its the place where we update more often the conditions

‣ IOVs are in general appended, cannot overwrite past

‣ Protection mechanisms are in place to guarantee that we are always
capable to reproduce results (by using the same conditions)

Conditions database for Run3A.Formica: ATLAS - Belle - CMS
Conditions Think Tank

consuming conditions
• Workflows run with a specific Global Tag

‣ resolve the full list of associated Tags

• A Tag is associated to a Payload type and an IOV sequence

‣ load IOV “pages” (e.g.: run2000, run2100, run2200,…)

- this is needed for caching at the level of the Frontier server !!
- the query needs to be reproducible

‣ the IOVs in 1 page are loaded once the first event is known:
- load the full IOV sequence for that page in every Tag
- cache the page until a new one is required

• Payloads are loaded “on demand”

‣ only when the job needs a payload this one is loaded

‣ payloads are loaded via a hash and cached at the level of Frontier server

