Microelectronics for Calorimeter readout

- Development of the KLauS ASIC at Uni Heidelberg
- ASIC Characterization & System integration activities at DESY

Konrad Briggl, KIP, Uni Heidelberg

This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.
KLauS – a SiPM readout ASIC for calorimetry

Low power: 25uW/ch; Power pulsing with <1% duty cycle

Targeting high density SiPMs
[e.g. 10um MPPC, gain \(\geq 10^5 \), 10k Pixels]

Required equivalent noise charge \(\leq 3\text{fC} \)
dynamic range \(\approx 150\text{pC} \)

CMOS technology

KLauS2: AMS .35 technology
12 channel analog front-end

KLaus3 prototypes: UMC .18 technology
SoC: integrated front-end, ADC & digital storage/TX
New Front-end,
Low-power SAR ADC [10b; 12b for SiPM gain calibration]

Channel-wise ADC, immediate signal digitization
Front-end: Blocks

Input stage:
- Low input impedance
- SiPM bias voltage tuning
- 3.3V supply → 2V tuning range

Analog processing
- "High gain" - *SiPM gain calibration: Small range, low noise (ENC)*
- "Low gain": *Full SiPM dynamic range*
- 1.8V supply → Reduced power, but less headrooms

Trigger branches
- Event trigger
 - *initiate ADC conv., time stamp*
- HG/LG selection
SiPM bias tuning
2V tuning range
Resolution $\approx 8\text{mV/LSB}$

Charge measurement
Sufficient SNR to operate 10\(\mu\)m MPPCs

Dynamic range for INL $\leq 1\%$
$\approx 2.8\text{pC}$ (High gain)
$\approx 160\text{pC}$ (Low gain stage)

![Graph showing SiPM bias voltage tuning](image1)

![Graph showing HG stage linearity](image2)

Single pixel spectrum using 10\(\mu\)m MPPC
SAR ADC development for KLauS

1 ADC per front-end channel

Development of low power, fully differential SAR-ADC

Two operation modes:
MIP quantization – **10bit resolution**
9+1(sign) bit SAR ADC

SiPM gain calibration – **12bit resolution**
Additional pipelined stage (8 bit SAR)
Residual amplification & digitization

First prototype:
DNL larger than expected (layout bug)
Will be improved in next version
Multi-channel prototype

Taped out 7 channel prototype
Expected back in September
1.5 x 4.5 mm² miniASIC (Final 36 channel chip size 5x5mm²)

7 Front-End + ADC + digital channel control modules

Digital part & readout options
Structured as future 36 channel version
Implemented “Testbeam” & “Japanese” features
e.g. event validation, coincidence logic, hit counters, etc

fast LVDS interface (160Mbit/s 8b-10b encoded)
I2C interface + redundant link
Power consumption & gated operation

DC power consumptions
Channel \(\approx 2.9 \text{ mW} \)
Shared bias block \(\approx 2.4 \text{ mW} \)

Power pulsing with 1% duty cycle
Extrapolated to 36 channel chip:

39 \(\mu \text{W/ch} \) for all analog blocks
Front-end & ADC, Bias block ; no digital part

Power-up cycle
Pedestals stable after \(\sim 10-15\mu \text{s} \)
Duty cycle can be reduced towards 0.5%

\(\rightarrow 25\mu \text{W goal well in reach} \)
DESY contributions to WP4 task 3

DESY and OMEGA cooperate since 2004 on development of calorimeter readout electronics:

- OMEGA: design and first tests
- DESY: multi-channel characterisation and system integration

Examples of measurements at DESY

- behaviour in larger systems
- interplay with SiPMs, influence of pulse shapes
- power-pulsing behaviour
- long term stability
- coherent noise
ASIC developments and tests

- **SPIROC2B**
 - working horse in all test beam prototypes
 - some bugs and rare instabilities found

- **SPIROC2C and D**
 - intermediate bug fix versions
 - additional features
 - extensive tests at DESY
 - DESY feedback for new version

- **SPIROC2E**
 - in production now
 - foreseen for next large calorimeter prototype
 - new BGA package in design

- **SPIROC3**
 - future version with I2C link and possibly independent channels
Summary & further development

KLauS3 development
• SiPM readout ASIC targeting low gain, high density SiPMs
• First multi channel SoC ASIC submitted
• 36 Channel version planned for 2017

System level ASIC characterization & operation
• ASIC in a “real environment” - Critical for Design maturation
• New version 'E' of SPIROC2 coming soon
 BGA package → new test-board closer to real hardware being developed
• The chip for next larger prototypes
Backup slides
Common gate & current feedback

$$R_{\text{in}}^{\text{DC}} = \frac{1}{g_{m1}} - \left(\frac{g_{m3}}{g_{m2}} \times \frac{1}{g_{m4}} \right)$$

Nominal input impedance $\sim 50\Omega$

150uA bias current @ 3.3V

SiPM Bias voltage tuning
['DAC' \rightarrow 'feedback' \rightarrow input]
~ 2V tuning range
Low power 8bit DAC
2nA / LSB

Power gating compatible
Small DC input voltage change in low power mode
Front-End, ADC & channel digital control

Digital sources from front-end:
- External / self generated trigger
- Gain selection result
- Trigger output to digital part:
 - Coarse counter registration
- Hold signal for ADC

FE hitlogic block:
- Initiate conversion after peak sampling
- Handshake with ADC control: start, busy
- Mask trigger pulses while ADC is busy
ADC input selection

ADC sources from FE:
- High gain branch signal
- Low gain branch signal
- External source (ADC calibration)
- External / self generated trigger

Selection:
- By configuration
- Automatic: HG/LG
 Additional comparator in FE
- Selection decision annotated to event
L0 & Coincidence event validation

First level event validation:
No validation flag - ADC conversion cancelled
→ Also reduces dead time

Validation signal sources:
- External source
- Internal validation:
 Coincident events between channels
 Configurable OR of group of 12

→ Validation window 1..8 Clock cycles
→ External validation:
 maximum delay: ~300-500ns
Linear range for different VCC

Charge injection measurements
Cd=33pF

Voltage drop in supply lines expected

→ Check linearity for different VCC
“LL” corner: VCC18=1.6V ; VCC33=3.1V
“TT” corner: VCC18=1.8V ; VCC33=3.3V
“HH” corner: VCC18=2.0V ; VCC33=3.5V
Two DACs to tune threshold:
- Global 6 bit DAC + scaling (for all channels)
- 4 bit DAC for fine-tuning (each channel)

→ Charge noise: 8fC typ.
→ Threshold configuration resolution (4b DAC): 5fC