
Benedikt Hegner, CERN
Frank Gaede, DESY

AIDA2020 First Annual Meeting
DESY, June 14-17, 2016

 EDM Toolkit

F.Gaede, DESY,
AIDA2020 Meeting 2016

2

Outline

– Introduction and Motivation
– Design of PODIO
– Implementation
– Open issues
– Summary and Outlook

F.Gaede, DESY,
AIDA2020 Meeting 2016

3

Why a new data model library?

– LHC experiments have overly complex EDMs
● strong use of inheritance and polymorphism
– state of the art when the code was written

● rather expensive virtual calls and memory operations
● deep object hierarchies

– LCIO used in linear collider community somewhat better in
complexity of EDM

● actual I/O suffers from same issues as LHC solutions

– new activities like the FCC are an opportunity to do better this
time

● solve problem in a generic way

F.Gaede, DESY,
AIDA2020 Meeting 2016

4

General Context

– PODIO (POD I/O) is one of the many components in the FCC
software stack aiming at more general usability in HEP

– Part of the AIDA2020 activities (together with DD4hep, etc)
– One of the first projects in the HEP Software Foundation

● The guinea pig for the project best-practices document

PODIOGaussino

LCG externals, DD4hep, ...

Geant4 Gaudi ROOT

FCC-specific Software

F.Gaede, DESY,
AIDA2020 Meeting 2016

5

Driving Design Considerations

– Simple Memory Model
– Concrete data are contained within plain-old-data structures (PODs)
– Provide vectorization friendly (or at least not unfriendly) interfaces

– Simple Class Hierarchies
– Wherever possible user concrete types
– Favor composition over inheritance

– Simple interfaces on user side
– In particular avoid ownership problems!

– Employ code generation
– Quick turn-around for improvements on back-end
– Easy creation of new types

– Support for both C++ and Python
– Thread-safety
– Use ROOT as first choice for I/O

– Keep transient to persistent layer as thin as possible

F.Gaede, DESY,
AIDA2020 Meeting 2016

6

What is a POD ?

– Plain-Old-Data object
– In C++11/14 a POD combines two concepts

● support for static initialization (trivial class)
● standard layout
– no virtual functions and no virtual base classes
– same access control (i.e. public,private,protected) for all non-static data

members
– …

– In short - a POD is closer to a classical C struct than a C++
object

– PODs are good for memory layout, memory and I/O
operations

⇒ PODIO !

F.Gaede, DESY,
AIDA2020 Meeting 2016

7

Separation of Concerns

– using PODs is a good idea - but they are a little bit too
simplistic to address all needs

=> need smart layers on top of the PODs to
● deal with object ownership
● allow referencing between objects
● seal with non-trivial I/O operations

– whenever performance is a concern - leave possibility to
access the bare PODs

F.Gaede, DESY,
AIDA2020 Meeting 2016

8

The PODIO layers

– user visible classes (e.g. Hit).
● act as transparent references to the underlying data,

– a transient object
● knowing about all data for a certain physics object, including inter-object

references (e.g. HitObject),

– plain-old-data (POD)
● holding the persistent object information (e.g. HitData), and

– a collection containing the user’s objects (e.g. HitCollection).

Just a simplified
view…

F.Gaede, DESY,
AIDA2020 Meeting 2016

9

Support for Vectorization

– key for vectorization is struct-of-arrays (SoA) vs. of arrays-of-structs (AoS)
● which representation is better heavily depends on the use case

– separation of PODIO in layers allows to choose one representation at the
implementation layer

● choice hidden from the non-expert user.

– on demand transformation between complete SoA vs. AoS representations is
highly inefficient

⇒ the decision for the representation of a given data type has to be made
upfront

– provide convenience methods for on demand transformation

auto x_array = hits.x<10>();

– need proper performance measurements on real use cases

F.Gaede, DESY,
AIDA2020 Meeting 2016

10

Supported Syntax

– objects and collections can be created via factories, ensuring
proper ownership:

– objects can be created standalone - if not attached to a
collection, they are automatically garbage collected:

auto& hits = store.create<HitCollection>("hits")
auto hit1 = hits.create(1.4,2.4,3.7,4.2); // init with
values
auto hit2 = hits.create(); // default-construct object
hit2.energy(42.23);

auto hit1 = Hit();
auto hit2 = Hit();
...
hits.push_back(hit1);
...
<automatic deletion of hit2>

F.Gaede, DESY,
AIDA2020 Meeting 2016

11

Object Ownership

– unclear object ownership and memory leaks are a common
problem

⇒ make it as hard as possible to do mistakes

– in PODIO there are two stages in object ownership
● before registering data into an event store

⇒ reference counted
● after adding data into event store

⇒ ownership with event store

– additional costs on object creation time and no costs later

F.Gaede, DESY,
AIDA2020 Meeting 2016

12

Relation between Objects

– allow to have 1-1, 1-N or N-M relationships, e.g.

– referenced objects can be accessed via iterator or directly

auto& hits = store.create<HitCollection>("hits");
auto hit1 = hits.create();
auto hit2 = hits.create();

auto& clusters = store.create<ClusterCollection>("clusters");
auto cluster = clusters.create();

cluster.addHit(hit1);
cluster.addHit(hit2);

for (auto i = cluster.Hits_begin(), \
 end = cluster.Hits_end(); i!=end; ++i){
 std::cout << i->energy() << std::endl;
}

auto hit = cluster.Hits(<aNumber>);

F.Gaede, DESY,
AIDA2020 Meeting 2016

13

Relations Details

– relations are handled outside the PODs
– the “Object Land” manages the lookup in memory
– every object in PODIO is uniquely identified by

collectionID + index
– during I/O every reference is being replaced by its Object ID

F.Gaede, DESY,
AIDA2020 Meeting 2016

14

Code generation
– code (C++/Python) for the EDM classes is auto generated from yaml

files
– EDM objects (data structures) are built from

● basic type data members
● components (structs of basic types)
● references to other objects

– additional user code (member functions) can be defined in the yaml
files

 # LCIO MCParticle
 MCParticle:
 Description: "LCIO MC Particle"
 Author : "F.Gaede, B. Hegner"
 Members:
 - int pDG // PDG code of the particle
 - int generatorStatus // status as defined by the generator
 - int simulatorStatus // status from the simulation
 #...
 OneToManyRelations:
 - MCParticle parents // The parents of this particle.
 - MCParticle daughters // The daughters this particle.

F.Gaede, DESY,
AIDA2020 Meeting 2016

15

Python Interface

– Python is treated as first class citizen in the provided library:

– implemented with PyROOT and some special usability code in
Python

with EventStore(filenames) as store:
for event in store:

hits = store.get(“hits”)
for hit in hits:

print hit.energy()

F.Gaede, DESY,
AIDA2020 Meeting 2016

16

I/O implementation

– PODIO’s I/O is rather trivial at the moment

– PODs are directly stored using ROOT
● not properly optimized for PODs yet

– object references are being translated into ObjID and then stored

– need to implement a direct binary I/O (storing array of structs) for
performance comparison with ROOT

F.Gaede, DESY,
AIDA2020 Meeting 2016

17

PODIO in use

– PODIO is actively used by the FCC study efforts
● in combination with Gaudi
● “Standalone” for other C++ and Python applications
● current data model definitions are in fcc-edm

– currently investigating the use of PODIO as evolution of LCIO
● improve the I/O performance - keep the EDM (plcio)

– LHCb is interested in PODIO for their data model upgrade
⇒ lhcbio demonstrator created during a coding sprint

F.Gaede, DESY,
AIDA2020 Meeting 2016

18

Future Work

– implement missing features
● vector members...

– polish the rough edges
● many iterations on different design ideas left some remnants
● in particular in the SoA support!

– finish the design document - Milestone M 3.2

– performance measurements comparisons
● e.g. with HEPMC3, LCIO::MCParticles, …

– eventually move into maintenance mode and support LHCb and
LC community in evaluating / adapting PODIO for their needs

F.Gaede, DESY,
AIDA2020 Meeting 2016

19

Summary and Outlook

– EDM toolkit PODIO developed in context of FCC (and LC)
with general HEP in mind

● storing EDM objects as PODs
● using ROOT I/O - others to follow
● code for C++ and Python

– first implementation in use by FCC
– under evaluation for LC

– design document (Milestone M 3.2) in preparation

F.Gaede, DESY,
AIDA2020 Meeting 2016

20

Links and Pointers

– GitHub repository + docs:

https://github.com/hegner/podio

– doxygen page

https://fccsw.web.cern.ch/fccsw/podio/index.html

– issue tracker

https://sft.its.cern.ch/jira/projects/PODIO

– general FCC software documentation page

https://fccsw.web.cern.ch/fccsw/

– plcio (EDM for LCIO w/ podio) git repository:

https://stash.desy.de/projects/IL/repos/plcio

