ELMB++

Ph. Farthouat, CERN

Outline

- What is the ELMB?
- Motivation for upgrade
- Proposal for the ELMB++
- Next steps

What is the ELMB?

Embedded Local Monitor Board

- 64 analog channels. I 6-bit ADC
- In-system-programmability (firmware upgrade)
- Interface: CANbus
- Radiation tolerance
 - ▶ 10¹² neutrons/cm² and ~14 krad
- Magnetic field up to 1.5 T
- High number of pieces:
 - ▶ ~20000 produced
 - All experiments
- Highly distributed
 - CAN cable up to 100 m

Motivation for Upgrade

- ▶ ELMB designed in the 90'
 - Obsolescence of some components
 - ▶ Huge problems for our last production (2–3 years ago)
 - Lifetime problems to be expected during HL-LHC
- Higher level of radiation expected
 - ➤ 100 krad, 4 10¹³ IMeV neutron.cm⁻²
 - SEE free (4 10⁴ hadron>20MeV.s⁻¹)
 - CAN drivers are a problem
- Some functionalities missing
 - DACs
 - ▶ JTAG or I2C direct interface

Needed

- Similar functionality as ELMB for HL-LHC
- Higher level of radiation
 - ~100 krad, 4 10¹³ IMeV neutron.cm⁻²
 - SEE free (4 10⁴ hadron>20MeV.s⁻¹)
- Similar number of analogue inputs
 - ADC resolution can be reduced to 12-bit

- DAC to be included
 - ▶ I2-bit
- Additional digital ports
 - ► I2C, JTAG, SPI
- CANbus replacement to be envisaged
- If possible avoid lengthy components qualification

GBT-SCA

- Slow Control Adaptor of the GBT
- Communicate with the GBTX with an e-link
- ▶ 12-bit ADC and 32-ch MUX
 - → 31 external inputs
- ▶ 4 x 12-bit DACs
- Several digital I/Os
 - ▶ 12C
 - ▶ SPI
 - ▶ GPIO
 - JTAG

GBT-SCA as basis of ELMB++

- No local processing
- Raw data to be transferred to remote processing units
 - One bidirectional link per SCA (or group of SCAs)
 - Processing unit could be fully standard (no radiation etc.)
- ▶ GBT-SCA planned to be used in the trackers and also in the ATLAS upgraded muon detector (New Small Wheels)

Hub-ELMB++ (1)

- ▶ ADC in the SCA: 12-bit, 3.5 ksamples/s
 - ~100 measurements of each input per second
- Can be used as a hub for simpler boards with only the GBT-SCA's and electrical connection to this one
 - @ 80 Mbps. Transmission distance to be characterised
 - Up to 38 additional SCA possible

- All components exist and are radiation hard qualified
- A demo board with all these components already exists and can be used for validating the idea
 - VLDB (see poster outside)

Satellite-ELMB++ (2)

- Satellite-ELMB++
 - As many as 19 such boards connected to 1 Hub-ELMB++
- Cost impact of the GBTX and VTRX reduced
 - ▶ Up to 1240 Analogue inputs for one GBTX/VTRX

Full Picture

- Star topology
 - Cost per channel maintained low
- Concept can be tested with existing hardware
 - ▶ VLDB
 - ▶ GLIB

Next Steps

- Need an agreement from the experiments for such a scheme
- Design of the Hub-ELMB++ and of the Satellite-ELMB++
 - Physical size
 - Connectors
 - Specification of the e-link cables
 - Maximum length
- Definition of the back-end part (ELMB++ FPGA) and of the network interface
- Estimation of the needed quantities
 - We are producing the GBT chip set this year