FAST TRACKER

Matteo Beretta

on behalf of ATLAS collaboration and ATLAS Fast-TracKer upgrade project

Physics motivations examples

FTK performance ATL-COM-DAQ-2014-011

- Exploit full-scan FTK tracking in HLT
- Tau identification and Jet/MET pileup correction

Primary vertex reconstruction for pileup resilient algorithms

- Can improve efficiency for multi-b jet signals
 - 3x efficiency improvements for ~fixed rate

FTK architecture

The Fast Tracker feeds HLT with full scan tracking at 100 kHz $p_{\scriptscriptstyle T}$ > 1 GeV

Combination of ATCA and VME cards

8192 ASICs (65nm)
1 billion patterns
~2000 FPGAs
Thousands of I/O links
up to 10 Gb/s

FTK Main Algorithms

AM Pattern matching 8 layers: 3 pixels + 5 micro-strips.
Hits compared at reduced resolution.

Good 8-layer tracks are extrapolated to additional layers, improving track quality

$$p_i = \sum_{j} C_{ij} \cdot x_j + q_i$$

Full hits precision retrieved for good roads. Fits reduced to scalar products.

~8000 ASICs (65nm)

~2000 FPGAs

Thousands of I/O links up to 10 Gb/s

System Components

SSB-SSB conn.

FTK input system (ATCA)

- IM cards: Waseda + Frascati
 - Perform clustering
 - Interface with Inner Detector
 - Receive 380 input S-Links
- 83/64 IM Artix7 produced
- 80/64 IM Spartan6 produced
- First cards used at point 1 since mid-2015

- DF cards: Stanford + Chicago (+FNAL)
 - Distribute data to processing units
 - Map readout to processing towers
 - Allows for overlap
 - Uses LAPP IPMC card
- 33/32 DFs produced
 - More spares becoming available

FTK core processing (VME)

- AUX cards: Chicago
 - Send clusters to AM board
 - On the fly data organization
 - 8-layer track fitting
 - partial duplicate removal
- 20/16 produced
- AMB cards Pisa
 - AM based pattern recognition
 - PRR in March

- SSB cards: Illinois Urbana Champaign
 - On the fly data organization
 - 8-layer to 12-layer extrapolation
 - 12-layer track fitting
 - global duplicate removal
- 10/8 RTMs being assembled
- 2/8 SSB main cards assembled
 - Under test
 - Remaining 8 assembled next

FTK to HLT interface (ATCA)

- FLIC: Argonne
 - Interfaces FTK with the rest of TDAQ
 - Formats data for HLT processing
 - Local to global hit position conversion
 - Uses LAPP IPMC card
- 3/2 cards produced

From SSBs

FTK HW production status

	Board Name	2016 cards /AM06 needed	Produced & tested	Production status
	IM Spartan 6	64	80	full
	IM Artix 7	64	83	full
	Data Formatter	32	35	full
	AUX	16	20	all for 2016
5	AM06 chip	1024	119	In production
	AMB	16		PRR in March
	SSB	8		In production
	FLIC	2	3	full

12.5% processing and barrel only coverage in 2016

AMChip Architecture

- 1 Flip-flop (FF) for each layer stores layer matches
- All patterns are compared in parallel with incoming data (HIT)
 pattern matching is finished as soon as all data is loaded (low latency)
- Fast pattern matching and flexible input
- the AM readout is based on a modified Fischer Tree¹

¹P. Fischer NIM A461 (2001) 499-504

AMChip 06 Memory cell architecture

- Based on 6T SRAM memory cell
- Connected to a XOR boolean function
- Comparison of bit lines and memory content is done through combinatorial network

Fig. 6. Schematic diagram of the XOR-based single-bit CAM cell.

Fig. 7. Layout of the XOR-based CAM cell in 65 nm CMOS technology.

Fig. 8. Schematic diagram of the 18-bit NOR logic gate.

Variable pattern matching resolution

From AM05 to AM06

- AM05 last small area prototype (2015)
 - 65nm, 2 Gb/s IO links, 23x23 BGA
 - 12 mm², 3 k patterns
- AM06 large area prototype
 - 65nm, 2 Gb/s IO links, 23x23 BGA
 - ~160 mm², 128 k patterns, 400M transistor
 - aim was a working device in a single submission
- Design assembled early 2015
 - Added "spare logic"
 - Increased setup and hold margins
 - Additional worst case corner
- Design submitted Jun 2015
 - 3 typical, 3 slow and 3 fast wafers
 - ± 7.5% saturation current

AMchip06 - It's here!

Design: INFN Milano, LPNHE, INFN Frascati, INFN Pisa

Jan 7, 2016 received 149 AM06 slow corner devices

AM06 testing results

- AM06 includes built-in self test (BIST)
 - Tests full chip (w/ large coverage) in ~1 second
 - 16 chips for first LAMB at CERN within 7 days!
- 143 devices tested
 - 119 chips without defects
 - Yield 83% +- 3% (estimate was 74%)
 - Faulty chips have localized defects
- AM06 "slow corner" works well
 - at 100 MHz (nominal speed), 1.15 V supply
 - more to be learned on power supply margin
 - more AM06 being packaged: staged delivery
- Considering an improved package
 - Include decoupling capacitors to improve power stability
- Preparing large scale testing at external company
 - Full FTK installation 8192 good devices + spares

AM board

AMBv4 received in December

Pisa

- Next (and final) version submitted
 - Fix few issues: including a bug from the CAD
 - Limited, but non zero, schedule risk
 - Working closely with the supplier
- Distributing up to 400W
 - Expected usage at 250W
 - Cooling performance critical
- LAMBs ready since September
 - Tested with AM05-AM06 adapter
- Now have 5 LAMBs in hand
 - First full AM board assembled
- PRR in March
 - after tests of fully loaded AM board

AM06 on AM board first tests

- AM06 slow @ 1.15V
 - At full usage 3.3 A, 3.8W, plus ~0.3W for IO
 - Expected usage 40-50%
 - Goal for cooling 70% usage = 3W
- Single LAMB cooled well at ~4W per AM06
 - 4W pessimistic condition
 - Good indication for full AMB in realistic case
- Full AMB tests on going
 - Will use USA15 infrastructure

Schedule

- Apr 2016: full installation of IMs, DFs and FLICs
- July 2016: launch production of more AM06
 - after 3 AMB tests, but before barrel commissioned
- Sep 2016: full installation of
 - 16 AUXes, 16 AMBs (50 to 100% populated), 8 SSBs
- Nov 2016: launch production of more processing cards
 - after barrel only system will be commissioned
- May 2017: full coverage FTK installed

Integration status

- Focus now: tests, integration and commissioning
 - Status differ board by board, from early testing to advanced commissioning

USA15 infrastructure

Argonne, Geneva, Pavia, Pisa, all

- ATCA: fully installed
 - 2 racks for IM-DFs with two 14-slot ATCA shelves each
 - one shelf installed with full DFs + IMs modules
 - 1 rack for FLIC with one 6-slot ATCA shelf
- VME: 2 racks installed (system for 2016)
 - Wiener bin + Wiener PS + Wiener and Pavia's fan tray
 - Wiener bin + CAEN PS + 2 Pavia's fan trays: prototype system for production
- Preliminary VME cooling tests done with mockup boards
 - System ready for cooling tests with AMB fully loaded of AM06

PCB temperature

Summary

- The FTK hardware is coming together
 - Most HW for barrel only system is produced
 - SSB in production
 - AM06 and follow up AMB on the critical path
 - AM board schedule squeezed as much as possible
- AM06 works well!
 - Meets FTK goals
 - More to be learned about operational margin
- Focus now: firmware, software, testing, commissioning
- Commissioning FTK in steps as production completes

Acronyms

- FTK: Fast TracKer
- IM or FTK_IM: FTK Input Mezzanine
- DF: Data Formatter
- AUX: Auxiliary card
- AMB: Associative Memory Board
- LAMB: Little Associative Memory Board
- AM05 and AM06: Associative Memory chip version 5 and 6
- SSB: Second Stage Board
- FLIC: FTK to Level-2 Interface Crate
- HLT: High Level Triggers
- PU: Processing Unit = AMB+AUX