Non-GBT links for data transmission

8 March 2016
Merritt Miller (UCSB)
Pulse Link Research

- Research Contributions by: Aditya Dalakoti, Carrie Segal, Di Wang, Guido Magazzu, Forrest Brewer

- Key Papers:
This is a presentation about

- Front-end to back-end data transmission for high radiation detector areas
 - High bandwidth, over copper
 - As little power as possible
 - Radiation precludes using non-hard or space-rated components
- Alternate approaches to a dedicated transceiver IC
 - Design details of a GALS approach to the problem
The Data-Power Problem

- Example: a full rate data read-out of a large-channel-count detector
 ~5M Channels
 ~5 bits/Channel
 - including compression, abstraction, header information
 => ~10^15 bits/s of data at 40MHz
 - Cisco expects 5x10^14 bits/s for the whole internet in 2019*
 - Requires roughly 100,000 Links @ 10Gbps ~75kW if using LpGBT**

- Data reduction techniques can help BUT
 - If the detector participates in triggering, some of the full rate data must flow
 - Higher detector occupancy may
 - reduce compression efficacy
 - increase the amount of data that needs to be interpreted with more complex algorithms

** Paulo Moreira “LpGBTX Specifications Summary”
What Does Non-GBT Mean?

- In this context we are talking about the GBT chip and not the project/associated blocks.
- The (lp)GBT use case looks something like:
Use-Case Draw-Backs

- E-Links cause power dissipation at both ends
 - ~6mW/ E-link channel for each transmitter*
 - ~40mW to feed the GBT using 1.28G E-Links
 - ~160mW worst-case (28E-Links)
 - E-Links may require serializers and multiple clock domains in the FE if the native speed is slower than E-Link speed
- Adaptable, Multi-clock model on GBT means power consumption to drive clocks, phase adjusters etc.
 - ~140mW of timing power used
 - Long SEU recovery time
- PCB wiring space and complexity to interconnect FE & GBT
- Error Correction applied after 1 round of data transmission and reception

*Power estimates inferred from Paulo Moreira “GBT Project: Present & Future” ACES 2014
Alternate Use Model (Non-GBT)

- Embedded Serializer, Delay-line based timing
 - No medium-speed links
 - Less latency (fewer stages of serialization, latching)
 - Possibly faster SEU recovery (Delay lines clear SEUs in 1 word)
Links with this use-case

- **LHCb VeloPix transmitter**
 - Synchronous, DLL-Based transmission
 - ~60mW SER + TX*

- **UCSB Pulse link** (more details presented here)
 - Asynchronous logic, Delay-line transmission
 - ~45mW SER + TX, ~15mW for RX
 - Custom RX required

- **Note both links give ~ 5Gbps @ ~60mW in 130nm**
 - ~5x lower energy per bit transmitted than LPGBT

Pulse Link

What is Pulse Link and how does it fit into this picture?

- Implements a rapid-wake burst-mode high-speed serial link
- Is a set of IP cores to be dropped into a host ASIC
- Performs serialization, deserialization, and TX/RX functions
- Includes rudimentary pre-emphasis and decision feed-back filters
- Operates with low max power (~60mW @ 5Gbps)
- Idles at very low power ~1mW
 - Wake/sleep happens automatically at word boundary; no extra delay
 - Very good for variable data; Unused bandwidth is unused power
- Is designed for high-radiation environments
Has this link been used before?

- This exact combination is not in service in any application to the best of the author's knowledge
- Pulse Asynchronous circuits have been used
 - Self-resetting logic exists in Pentium 4 for example
- RZ line codes have been used before
 - Common decades ago for electrical links
 - Still has applications in some optical links
- Asynchronous line codes have been used before
 - For example IEEE 1355 DS-DE links (and SpaceWire that take advantage of those style links)
Radiation Hardness Features

- Designed with high-radiation environment in mind
 - No bias voltages used
 - No narrow transistors used
 - Asynchronous circuits broadly tolerant of small changes to performance
- Redundancy used through the entire design
 - From receiving amplifiers at each pin to output drivers
 - Output drivers used parallel redundancy (for practicality)
 - Everything else used TMR
- If radiation damage exceeds tolerances circuit slows instead of fails
Pulse Logic

- Pulse Link is enabled by a type of Asynchronous Pulse Logic
- This logic family (related to self-resting domino logic) is known for fast operation
- Fast Pulse latches
 - Sampling aperture as low as 80ps
 - Clock->q (equiv) as low as 40ps
- Allows the creation of fast SER & DES without the need for synchronous multiplexing/sampling
 - Both operations become counting & latching (as they would at lower speed with standard cells)
Link Internal Function

- Link logic uses pulses to mark time (events)
- Serialization is translation of a register (electrical levels) to pulses that mark when a 1 or 0 should be transmitted
- A serializer cell is a pair of AND gates and a done signal
- Multiplexing can be done with or gates
- The Serializer is grouped into sets of 4 bits
 - 4 bits serialize before voting on the 'go' signal
 - A stage's register (latches) goes opaque when go reaches the 1st bit,
 - latches becomes transparent when go exits the block
- 2 groups of 4 make a group of 8 that runs continuously (one is loading while the other is serializing)
- We have also extended this to a 16 bit DDR version (allows for ~150MHz clock)
Pulsed Signaling

- Asynchronous Logic Requires an explicit timing signal (cannot imply a clock)
- Pulse Link Must provide a transition for each bit for the signal to be read
- Original link construction uses electrical pulses, which are the native format for the logic family
 - Originally 2 wires carrying pulses
 - Planned revision to true differential (more compatible with twinax cables)
 - Differential Signaling Should improve noise immunity considerably
Pulse Detection

- Pulses are detected via a non-linear circuit
 - Integrates the area over a given noise threshold
 - Resets integral when pulse is detected
 - Requires reset to be reasonably tuned to the expected pulse shape
- Has some immunity to dispersion and ISI
- Represents a low-order decision feed-back correction circuit
- Detection for UCFF4 prototype RX is roughly 7.5×10^{-12} Vs over threshold
 - Simulation of a 300um PCB trace show TX pulse strength of 9×10^{-12} Vs after 1m
 - Detection improvements for twinax cable planned for next prototype (~6mos.)
Current Performance

- Demonstrator is currently functional on a test bench
- 1.15m transmissions confirmed above detection threshold
- Transmission rates to 4.8Gbps confirmed
- Comparison of simulations and measurements suggest that lowering the noise threshold will improve transmission distance
 - Threshold is ~80mV too high for expected levels of dispersion

Transmission verified to 1.15m
Inter-cycle Timing Stability

RX strobe matches TX strobe with high fidelity. Above: 5000 cycles from scope trigger, output strobe shows no significant jitter
Intra-cycle Timing Stability

Pulses, while unevenly spaced, do show up in predictable time slots (+/- 10ps jitter)

Max Data Rate Vs Vdd

Planned improvements (part of the IBM → TSMC transition)

- Transition to true differential signaling
 - Pseudo differential signaling has propagation issues in twinax cable
 - Opportunity to improve drive power
- Investigate reducing Tx power in exchange for increase in Rx power
 - changes in signal levels,
 - active filters
- Investigate lower-power 3-pam
 - Note: operation of 3-pam could enable much higher (1.5-2x) data rates --to be investigated
In Conclusion

- There exists the chance to get much more data out of a detector for a given amount of power
 - Integration can have big savings
 - Removing high-speed clocks also has big savings
- Pulse links (and some of the technology they are based on) can further the improvement
 - Instant Idle helps with variable data rates
 - Total energy spent is related to the average rather than peak data rate
- Some detectors may take better advantage esp. full data readout
 - Reduced module complexity
 - Reduced energy per bit
 - Can afford to do data aggregation off-module (FPGA?)